[发明专利]基于大数据的电子商务决策方法及其系统在审
| 申请号: | 202310668132.0 | 申请日: | 2023-06-07 |
| 公开(公告)号: | CN116629977A | 公开(公告)日: | 2023-08-22 |
| 发明(设计)人: | 李凌霄 | 申请(专利权)人: | 深圳市齐力创新有限公司 |
| 主分类号: | G06Q30/0601 | 分类号: | G06Q30/0601;G06Q30/0201;G06F18/25;G06N3/045;G06N3/0442;G06N3/0464;G06N3/048 |
| 代理公司: | 杭州杭奕专利代理事务所(普通合伙) 33535 | 代理人: | 张常胜 |
| 地址: | 518111 广东省深圳市龙岗区平*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 数据 电子商务 决策 方法 及其 系统 | ||
一种基于大数据的电子商务决策方法及其系统,其获取待推荐用户的历史消费数据,以及,获取待推荐电商产品的描述文本和产品图像;采用基于深度学习的人工智能技术,挖掘所述用户的历史消费数据的语义理解特征与所述电商产品的描述文本语义特征和产品图像特征的关联特征之间的关联性特征分布信息,以此对于消费数据与电商产品在高维空间中的特征对比,从而精准地为用户推荐适宜的电商产品,提高电商产品推荐的效率和准确性,进而提升用户的体验和满意度,扩展营销的可能性。
技术领域
本申请涉及智能化决策技术领域,并且更具体地,涉及一种基于大数据的电子商务决策方法及其系统。
背景技术
电子商务相对于传统零售业来说,最大的特点就是都可以通过数据化来监控和改进。通过对于电子商务网站的数据分析,可以看到用户的客源、如何组织产品可以实现很好的转化率、投放广告的效率等。因此,对于电子商务网站的数据分析显得尤为重要。
当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户。电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里面,所以对于这些客户,可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户的扩展营销的可能性。但往往针对性低,导致交易成功率不高。
因此,期待一种优化的电子商务决策方案。
发明内容
为了解决上述技术问题,提出了本申请。本申请的实施例提供了一种基于大数据的电子商务决策方法及其系统,其获取待推荐用户的历史消费数据,以及,获取待推荐电商产品的描述文本和产品图像;采用基于深度学习的人工智能技术,挖掘所述用户的历史消费数据的语义理解特征与所述电商产品的描述文本语义特征和产品图像特征的关联特征之间的关联性特征分布信息,以此对于消费数据与电商产品在高维空间中的特征对比,从而精准地为用户推荐适宜的电商产品,提高电商产品推荐的效率和准确性,进而提升用户的体验和满意度,扩展营销的可能性。
第一方面,提供了一种基于大数据的电子商务决策方法,其包括:获取待推荐用户的历史消费数据,以及,获取待推荐电商产品的描述文本和产品图像;对所述待推荐用户的历史消费数据进行预处理以得到预处理后历史消费数据;将所述预处理后历史消费数据经分词处理后通过词嵌入层以得到多个消费词嵌入向量;将所述多个消费词嵌入向量通过包含双向LSTM模型和RNN模型的双管线语义理解器以得到多尺度消费数据语义理解特征向量;将所述待推荐电商产品的描述文本和产品图像通过包含序列编码器和图像编码器的CLIP模型以得到待推荐产品特征矩阵;对所述待推荐产品特征矩阵和所述多尺度消费数据语义理解特征向量进行关联编码以得到分类特征向量;对所述分类特征向量进行高斯概率密度的流形曲面的基准线网化以得到优化分类特征向量;以及
将所述优化分类特征向量通过分类器以得到分类结果,所述分类结果用于表示是否推荐所述待推荐电商产品给所述待推荐用户。
在上述基于大数据的电子商务决策方法中,将所述多个消费词嵌入向量通过包含双向LSTM模型和RNN模型的双管线语义理解器以得到多尺度消费数据语义理解特征向量,包括:将所述多个消费词嵌入向量输入所述双管线语义理解器的双向LSTM模型以得到第一尺度消费数据语义理解特征向量;将所述多个消费词嵌入向量输入所述双管线语义理解器的RNN模型以得到第二尺度消费数据语义理解特征向量;以及,将所述第一尺度消费数据语义理解特征向量和所述第二尺度消费数据语义理解特征向量进行级联以得到所述多尺度消费数据语义理解特征向量。
在上述基于大数据的电子商务决策方法中,将所述待推荐电商产品的描述文本和产品图像通过包含序列编码器和图像编码器的CLIP模型以得到待推荐产品特征矩阵,包括:使用所述CLIP模型的图像编码器对所述产品图像进行处理以得到图像特征向量;使用所述CLIP模型的序列编码器对所述待推荐电商产品的描述文本进行处理以得到文本特征向量;以及,使用所述CLIP模型的联合编码器来基于所述文本特征向量,对所述图像特征向量进行图像属性编码优化以得到所述待推荐产品特征矩阵。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市齐力创新有限公司,未经深圳市齐力创新有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202310668132.0/2.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置





