[发明专利]基于计算机视觉的智慧货物识别分拣方法及系统有效

专利信息
申请号: 202310446331.7 申请日: 2023-04-24
公开(公告)号: CN116187718B 公开(公告)日: 2023-08-04
发明(设计)人: 朱禹安;李磊;陈慧莉;张景禹 申请(专利权)人: 深圳市宏大供应链服务有限公司
主分类号: G06Q10/0631 分类号: G06Q10/0631;G06Q10/087;G06V20/10;G06V10/25;G06V10/30;G06V10/74;G06V10/80;G06V10/82;G06N3/08;B07C3/14
代理公司: 苏州创智慧成知识产权代理事务所(特殊普通合伙) 32419 代理人: 张敏
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 计算机 视觉 智慧 货物 识别 分拣 方法 系统
【权利要求书】:

1.一种基于计算机视觉的智慧货物识别分拣方法,其特征在于,包括以下步骤:

获取预设时间内的货物待分拣订单信息,将所述货物待分拣订单进行订单分割,根据相似度计算将分割后订单进行重新组合;

设置重新组合后订单中货物的分拣等级,根据所述货物的分拣等级进行分配,预设不同分拣区域分拣设备的分拣任务;

获取待分拣货物的图像信息,通过预处理后获取图像的感兴趣区域,获取所述感兴趣区域的图像特征及点云特征;

基于深度学习构建货物识别模型,根据不同的分拣任务对货物识别模型进行训练,将所述图像特征及点云特征输入训练好货物识别模型进行识别分拣;

获取不同分拣区域的各类货物的实时分拣量,根据所述实时分拣量对不同分拣区域的分拣任务进行更新优化;

设置重新组合后订单中货物的分拣等级,根据所述货物的分拣等级进行分配,预设不同分拣区域分拣设备的分拣任务,具体为:

获取同一分拣序列集中各个货物的货物需求量,根据所述货物需求量将货物进行排序,根据排序结果通过预设等级划分标准设置货物的分拣等级,并基于所述分拣等级设置分拣区域中对应的最高分拣设备占据数;

获取各个货物从存储区域到分拣区域的运输时间及单件货物分拣时间,生成单种货物的总分拣时间,计算最高分拣等级货物的总分拣时间与其他分拣等级货物总分拣时间的时间差;

预设时间差阈值,通过所述时间差与时间差阈值的对比进行初步筛选,保留时间差小于时间差阈值的其他分拣等级货物;

将最高分拣等级货物需求量与最高分拣设备占据数的比值及其他分拣等级货物需求量与剩余分拣设备数的比值进行对比,选取经过初筛货物中与最高分拣货物等级对应比值偏差符合预设标准的其他分拣等级货物;

将最高分拣等级货物与符合预设标准的其他分拣等级货物根据最高分拣设备占据数确定分拣组合,设置分拣区域的分拣任务,同时,依次重新设置最高分拣等级确定不同的分拣组合设置剩余分拣区域的分拣任务。

2.根据权利要求1所述的一种基于计算机视觉的智慧货物识别分拣方法,其特征在于,获取预设时间内的货物待分拣订单信息,将所述货物待分拣订单进行订单分割,根据相似度计算将分割后订单进行重新组合,具体为:

将预设时间内的货物待分拣订单信息进行预处理,提取所述货物待分拣订单的词向量,根据所述词向量获取不同订单中的货物关键词及数量关键词,基于所述货物关键词及数量关键词确定货物品类及货物需求量;

根据货物品类及货物需求量将货物待分拣订单进行分割,生成离散的货品数据序列,并根据货物品类及货物需求量设置序列的数据标签,利用所述数据标签计算不同货品数据序列的相似度;

获取货品数据序列之间的相似度偏差,将相似度偏差小于预设偏差阈值的货品数据序列划分为同一分拣序列集,获取分拣序列集中各货物的平均需求时间,基于所述平均需求时间对各个分拣序列集进行排序。

3.根据权利要求1所述的一种基于计算机视觉的智慧货物识别分拣方法,其特征在于,获取待分拣货物的图像信息,通过预处理后获取图像的感兴趣区域,获取所述感兴趣区域的图像特征及点云特征,具体为:

通过双目系统获取待分拣货物的图像信息,将所述待分拣货物的图像信息进行灰化处理,利用均值滤波对灰化图像进行滤波去噪;

将滤波后图像进行光照补偿及二值化处理,获取货物的轮廓信息,根据所述轮廓信息进行框选获取感兴趣区域,根据感兴趣区域图像信息进行特征提取货物图像特征;

将感兴趣区域图像信息进行坐标变换,对双目系统进行标定,根据左目图像及右目图像中的同一边缘目标点的成像点计算视差,获取目标点的深度信息;

将左目图像与右目图像的相似点进行匹配进行图像配准,根据双目系统的左右视差,目标点深度信息及双目相机的内外参数获取边缘目标点的空间坐标,生成点云特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市宏大供应链服务有限公司,未经深圳市宏大供应链服务有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202310446331.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top