[发明专利]基于概率神经网络的海上伏击预测方法及系统有效

专利信息
申请号: 202310267447.4 申请日: 2023-03-20
公开(公告)号: CN116362390B 公开(公告)日: 2023-09-12
发明(设计)人: 李兵;胡汭;张艳霞 申请(专利权)人: 中国人民解放军军事科学院战略评估咨询中心
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26;G06N3/047
代理公司: 北京春江专利商标代理事务所(普通合伙) 11835 代理人: 向志杰
地址: 100091*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 概率 神经网络 海上 伏击 预测 方法 系统
【说明书】:

发明涉及一种基于概率神经网络的海上伏击预测方法及系统,属于人工智能技术领域。所述方法包括:使用位置预测器件,用于以目标航母在当前轮次之前设定数目的各个轮次参与军事行动的各个集结位置坐标为再构后的概率神经网络的各个输入信息,运行所述概率神经网络以获得所述目标航母当前轮次参与军事行动的集结位置坐标;使用伏击分析器件,用于基于接收到的集结位置坐标分析伏击所述目标航母的最佳伏击区域的坐标范围。本发明还涉及一种基于概率神经网络的海上伏击预测系统。通过本发明,能够采用针对性的海域环境数字化处理机制以及基于概率神经网络的信息预测处理机制,完成对目标航母的当前集结位置的现场预测,从而提升了海上伏击的成功率。

技术领域

本发明涉及人工智能技术领域,尤其涉及一种基于概率神经网络的海上伏击预测方法及系统。

背景技术

海上伏击,指的是预先判断对方的移动军事目标例如航母等的未来进入区域,并在所述进入区域内提前埋伏打击力量,例如各种舰船,以在对方的移动军事目标驶入所述进入区域内时,依靠先发优势进行火力覆盖射击,从而达到预期打击效果。

由此可见,对方的移动军事目标的未来进入区域的预测准确性,直接决定了海上伏击的效果,其中,对方的移动军事目标的未来进入区域与对方的移动军事目标的当前集结位置密切相关,确定了对方的移动军事目标的当前集结位置,采用预测模型就可以完成各个区域的未来时刻的驶入概率预测,从而选择出概率最高的区域以作为未来进入区域并提前埋伏打击力量,实现高效的海上伏击。

然而,对方的移动军事目标的当前集结位置与对方的移动军事目标的目标类型、行驶习惯、作战模式等要素密切相关,同时针对不同的作战海域,由于海岸线分布的复杂性以及海面环境的复杂性,导致很难对对方的移动军事目标的当前集结位置进行准确预测。

发明内容

为了解决上述技术问题,本发明提供了一种基于概率神经网络的海上伏击预测方法及系统,在海岸线环境数字化和坐标化的基础上,通过为每一目标航母构造不同结构以及不同学习模式的概率神经网络,实现基于目标航母历史集结位置的当前集结位置的预测机制,从而为海上伏击区域的分析提供有价值的参考数据。

为此,本发明至少需要具备以下几处重要的发明点:

发明点一:以目标航母历史轮次参与军事行动的集结位置坐标作为所述目标航母对应的概率神经网络各个输入信息和/或学习信息执行对概率神经网络的构建和学习,以获得能够预测所述目标航母当前轮次参与军事行动的集结位置坐标,从而为针对所述目标航母的最佳伏击区域的选择提供关键数据;

发明点二:针对每一目标航母构造不同结构的概率神经网络,其中,目标航母的当前服役年数越短,其对应的概率神经网络的输入信息的数量越少;

发明点三:针对每一目标航母实现不同次数的概率神经网络的学习动作,其中,概率神经网络的学习次数的数值与其对应的目标航母的最高行驶节数成正比。

根据本发明的第一方面,提供了一种基于概率神经网络的海上伏击预测方法,所述方法包括:

使用坐标解析器件,用于针对目标航母采集所述目标航母历史上每一轮次参与军事行动的集结位置坐标,所述集结位置坐标位于军事行动对象的邻海且包括横坐标和纵坐标;

使用网络初构器件,用于以所述目标航母预测轮次参与军事行动的集结位置坐标为概率神经网络的单个输出信息,以所述目标航母在预测轮次之前设定数目的各个轮次参与军事行动的各个集结位置坐标为概率神经网络的各个输入信息,构建归属于所述目标航母的、执行集结位置预测的概率神经网络;

使用次数映射器件,用于基于所述目标航母的最高行驶节数映射所述目标航母对应的概率神经网络的选择学习次数,所述选择学习次数的数值与所述目标航母的最高行驶节数成正比;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军军事科学院战略评估咨询中心,未经中国人民解放军军事科学院战略评估咨询中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202310267447.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top