[发明专利]基于大数据分析的个性化推送更新优化方法及AI系统在审

专利信息
申请号: 202310244291.8 申请日: 2022-09-15
公开(公告)号: CN116629957A 公开(公告)日: 2023-08-22
发明(设计)人: 卢施施;陆旭婷 申请(专利权)人: 卢施施
主分类号: G06Q30/0601 分类号: G06Q30/0601;G06F18/24;G06F18/214
代理公司: 暂无信息 代理人: 暂无信息
地址: 663000 云南省文山壮*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 分析 个性化 推送 更新 优化 方法 ai 系统
【说明书】:

本申请实施例提供一种基于大数据分析的个性化推送更新优化方法及AI系统,通过对产品社群互动大数据进行大数据分析,将在同一目标时间段内存在相同产品互动画像的每个基准用户和对应的对象用户添加到对应该目标时间段的产品互动画像分组中,并基于该目标时间段内与产品互动画像所对应的个性化推送策略对产品互动画像分组进行互联网产品信息推送,获取产品互动画像分组针对推送的互联网产品信息的联动关注操作数据,由此进行用户需求输出,从而通过将相同产品互动画像的用户进行汇总后,将个性化推送策略与不同时间段和不同产品互动画像进行关联,提高互联网产品信息推送的时间周期时效性,继而提高后续用户需求输出的可靠性。

本申请是申请号202211118570.1、申请日为2022年09月15日、发明创造名称为“应用于云端互联网交互流程的大数据分析方法及AI系统”的中国申请的分案申请。

技术领域

本发明涉及大数据技术领域,具体而言,涉及一种基于大数据分析的个性化推送更新优化方法及AI系统。

背景技术

个性化推荐系统可以有效提升互联网产品的运营效率和用户转化率,尤其在内容分发、电商、社交等领域的运用越来越多,个性化推荐已经成为一个产品的基础建设,其依靠于相关用户的大数据挖掘进而分析出不同用户的用户画像,然后进行标签分类后进行个性化信息推荐。然而,在相关技术中,通常在大数据挖掘过程中仅针对单个用户的行为大数据进行处理,缺乏交互流程过程中的互动大数据挖掘,导致在进行用户画像分析时存在遗漏,也难以调动多用户之间的有效互动。并且,当前信息推送过程中并没有考虑互联网产品信息推送的时间周期时效性。

发明内容

为了至少克服现有技术中的上述不足,本发明的目的在于提供一种基于大数据分析的个性化推送更新优化方法及AI系统。

第一方面,本申请提供一种应用于云端互联网交互流程的大数据分析方法,应用于AI系统,所述AI系统与多个互联网产品服务器通信连接,所述方法包括:

对目标互联网在线产品的云端互联网交互流程所对应的产品社群互动大数据进行大数据分析,获取在同一目标时间段内存在相同产品互动画像的每个基准用户和对应的对象用户;

将所述每个基准用户和对应的对象用户添加到对应该目标时间段的产品互动画像分组中,并基于该目标时间段内与所述产品互动画像所对应的个性化推送策略对所述产品互动画像分组进行互联网产品信息推送;

获取所述产品互动画像分组针对推送的互联网产品信息的联动关注操作数据,并基于所述联动关注操作数据对所述产品互动画像分组进行用户需求输出。

譬如,在第一方面的一种可能的实施方式中,所述获取所述产品互动画像分组针对推送的互联网产品信息的联动关注操作数据,并基于所述联动关注操作数据对所述产品互动画像分组进行用户需求输出的步骤,包括:

获取所述产品互动画像分组中大于设定数量的目标用户针对推送的互联网产品信息的共同关注操作数据,作为联动关注操作数据;

将所述联动关注操作数据输入到预先训练的用户需求字段预测模型中,获得对应的用户需求字段分布,所述用户需求字段分布用于对所述产品互动画像所对应的个性化推送策略进行更新和优化;

其中,所述用户需求字段预测模型的训练步骤包括:

获取参考用户需求学习数据序列;所述参考用户需求学习数据序列中包含多个参考联动关注操作数据,以及多个所述参考联动关注操作数据各自的第一参考用户需求字段信息;所述第一参考用户需求字段信息表征所述参考联动关注操作数据在用户先验验证库中的用户需求字段分布;

依据所述第一参考用户需求字段信息指示的所述用户需求字段分布,对多个所述参考联动关注操作数据进行分簇,确定多个所述参考联动关注操作数据的第二参考用户需求字段信息;所述第二参考用户需求字段信息表征所述参考联动关注操作数据更新后的所述用户需求字段分布;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于卢施施,未经卢施施许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202310244291.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top