[发明专利]一种基于改进蚁群算法的移动机器人路径规划方法在审
申请号: | 202310152128.9 | 申请日: | 2023-02-22 |
公开(公告)号: | CN116339318A | 公开(公告)日: | 2023-06-27 |
发明(设计)人: | 曾钰桔 | 申请(专利权)人: | 昆明理工大学 |
主分类号: | G05D1/02 | 分类号: | G05D1/02 |
代理公司: | 昆明明润知识产权代理事务所(普通合伙) 53215 | 代理人: | 张云 |
地址: | 650093 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 改进 算法 移动 机器人 路径 规划 方法 | ||
本发明公开了一种基于改进蚁群算法的移动机器人路径规划方法,首先利用栅格图法对移动机器人的运动环境进行建模;接着在状态转移概率中引入平滑函数,使蚂蚁在进行下一节点选择时,考虑路径的平滑性;在对路径信息素更新时,引入多目标评价函数,同时提出一种基于熵权的分段信息素更新方式,每次迭代规划路径按多目标评价函数值从小到大进行排序并分段,对不同的分段,引入不同的信息素增强系数的放大系数,提升了算法的收敛速度;最后对路径节点进行优化,减少不必要的节点,减小了路径转弯角度以及路径长度,再对节点优化后路径的转弯拐点处利用贝塞尔曲线再次进行平滑,使得本发明提供的技术方案能获得路径更优且更平滑的路径。
技术领域
本发明涉及一种基于改进蚁群算法的移动机器人路径规划方法,属于移动机器人路径规划领域。
背景技术
随着信息技术的快速发展,移动机器人也越来越被各个行业重视,无论是在日常生活,还是在工业生产中,都可以看到移动机器人的身影。在生产过程中,移动机器人的使用,降低了人工成本,极大的提升了生产效率,而在生产生活中,要使移动机器人能够准确、快速和高质量的实现自主导航完成不同的任务,路径规划的研究就显得尤为重要,而路径规划算法又是路径规划中需要解决的核心问题,国内外学者针对路径规划提出多种算法,如传统的路径规划算法:A*算法、D*算法、人工势场算法等,智能仿生算法如蚁群算法、遗传算法、粒子群算法等。
蚁群算法最早是由Marco Dorigo提出,通过研究蚁群从蚁窝到食物源的路径寻找过程,可以发现,蚂蚁会在其经过的路径上释放一种可以称之为“信息素”的物质,蚁群内的蚂蚁对“信息素”具有感知能力,它们会沿着“信息素”浓度较高路径行走,而每只路过的蚂蚁都会在路上留下“信息素”,这就形成一种类似正反馈的机制,这样经过一段时间后,整个蚁群就会沿着最短路径到达食物源了。蚁群算法具有结构简单、适应性强、较强的鲁棒性等优势,适合用于机器人路径规划研究,但也存在收敛速度较慢,易陷入局部最优的情况。
发明内容
本发明提供了一种基于改进蚁群算法的移动机器人路径规划方法,以用于获得移动机器人的的最优路径,并进一步,依据最优路径获得二次优化路径;再进一步地,可以对二次优化路径进行优化,获得平滑后的最优路径。
本发明的技术方案是:一种基于改进蚁群算法的移动机器人路径规划方法,步骤1:依据栅格图法对移动机器人的运动环境进行建模,每一个栅格点设置其对应的编码,并以每一个栅格的中心点为当前栅格的坐标点;
步骤2:设置移动机器人路径规划的起始点和目标点,并初始化改进蚁群算法的参数;
步骤3:将M只蚂蚁置于起始点,开始本次迭代;
步骤4:找到当前蚂蚁的下一可行节点,计算下一节点的状态转移概率,并将选择的下一节点进行记录,同时对禁忌表进行更新;
步骤5:判断M只蚂蚁是否全部完成迭代,如果是,那么对当前迭代的所有到达目标点的蚂蚁路径利用多目标评价函数进行评价;计算多目标评价函数的权重;最后计算每条路径的多目标评价函数值;否则,跳转步骤4;
步骤6:依据改进信息素更新方式和路径的多目标评价函数值对路径信息素进行更新,并结束本次迭代;
步骤7:判断当前迭代次数是否达到最大迭代次数,如果是,那么终止,输出当前初始最优路径;否则,迭代次数加1,跳转步骤3。
还包括:
步骤8:对当前初始最优路径利用节点优化规则进行优化,获得二次优化路径。
还包括:
步骤9:对二次优化路径的转弯节点处利用贝塞尔曲线进行平滑优化,优化后,输出平滑后的最优路径。
栅格点的编码以及其对应坐标,具体为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202310152128.9/2.html,转载请声明来源钻瓜专利网。