[发明专利]基于混合二阶梯度矩阵特征值的结冰河流检测方法及装置在审
申请号: | 202211513359.X | 申请日: | 2022-11-29 |
公开(公告)号: | CN115861341A | 公开(公告)日: | 2023-03-28 |
发明(设计)人: | 罗俊海;余杭;彭真明;高祝君;余思齐;伍风翼;邓佳坤 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/136;G06T7/62;G06T5/00;G06F17/16 |
代理公司: | 成都正煜知识产权代理事务所(普通合伙) 51312 | 代理人: | 袁宇霞 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 混合 阶梯 矩阵 特征值 结冰 河流 检测 方法 装置 | ||
本发明公开了一种基于混合二阶梯度矩阵特征值的结冰河流检测方法及装置,针对红外成像中高反结冰河流对特定小目标检测的干扰问题,本发明旨在检测出红外图像中的结冰河流,从而降低特定小目标检测的虚警率。方法包括:输入原始红外图像,计算输入红外图像的混合二阶梯度矩阵,根据混合二阶梯度矩阵的特征值和特征向量构造得结冰河流候选区域图和河流方向矢量图;根据河流方向矢量图设计对应方向的滤波模板,在河流候选区域图上计算滤波模板的响应值,得到河流区域增强图像;对河流区域增强图像进行二值化处理,依据先验信息和实验结果,设定合适的区域面积尺寸阈值,剔除面积较小的区域,得到最终的检测结果。
技术领域
本发明涉及遥感图像红外成像目标检测技术领域,特别涉及一种基于混合二阶梯度矩阵特征值的结冰河流检测方法及装置。
背景技术
随着红外探测技术的发展,红外成像目标检测在精确制导、预警、侦察等方面起着重要的作用。然而自然界中的某些场景,如结冰河流、湖泊、卷云、雪山、林火等会产生高反射和较强的辐射能量,在红外成像场景图像中和特定目标一样具有较强的视觉显著性和高亮响应,因此会对特定目标的检测产生强干扰,从而引起较高的检测虚警率。
目前的河流检测技术中,大部分基于可见光波段的数据,针对红外成像数据的研究较少。同时,部分河流检测方法利用机器学习,通过提取河流的特征,如纹理、局部熵等,将提取的特征输入分类器中进行训练,该类方法需要大量的样本,对样本数据有很强的依赖性,然而公开红外图像结冰河流数据较少,难以支持分类器的学习。也有的检测方法利用活动轮廓模型和边缘信息来检测河流,并使用数学形态学方法对提取到的河流进一步优化。此外,为了充分利用河流的方向性,现有的方法中一般利用Gabor变换或剪切波变换等对图像进行多尺度、多方向分析,这无疑会增加检测方法的运行时间。
因此,需要提出一种高效准确的结冰河流检测方法。
发明内容
本发明的目的在于:为了解决目前的河流检测速度慢和需要大量样本数据进行训练学习的问题,本发明提供了一种基于混合二阶梯度矩阵特征值的结冰河流检测方法,能够实现对结冰河流的高效率、高精度的检测。
本发明采用的技术方案如下:
一种基于混合二阶梯度矩阵特征值的结冰河流检测方法,包括以下步骤:
步骤1.获取待处理的包含结冰河流的原始红外图像I1;
步骤2.计算原始红外图像的混合二阶梯度矩阵,根据混合二阶梯度矩阵的特征值和特征向量得到结冰河流候选区域图和河流方向矢量图;
步骤3.根据步骤2中得到的河流方向矢量图设计对应方向的滤波模板,计算滤波模板在河流候选区域图上的响应值,得到河流区域增强图像;
步骤4对河流区域增强图像进行二值化处理,依据先验信息和实验结果,设定合适的区域面积尺寸阈值,剔除面积较小区域,输出结冰河流的检测结果。
进一步的,所述步骤2包括如下步骤:
步骤2.1选取尺度因子为σ1的高斯函数对图像I1进行平滑滤波,得到图像I2,σ1的取值范围为0.5~3.5;
步骤2.2分别计算图像I2中每个像素点的X方向的二阶梯度、Y方向的二阶梯度和交叉二阶梯度得到图像I2中每个像素点的混合二阶梯度矩阵;
步骤2.3根据矩阵H计算相应的特征值和特征向量,数值最大的特征值对应的矩阵为I3,数值最小的特征值对应的矩阵为I4,计算结冰河流候选区域图I5,公式如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202211513359.X/2.html,转载请声明来源钻瓜专利网。