[发明专利]一种基于毫米波雷达点云的道路车道线识别方法在审
| 申请号: | 202211501661.3 | 申请日: | 2022-11-28 |
| 公开(公告)号: | CN115980735A | 公开(公告)日: | 2023-04-18 |
| 发明(设计)人: | 林永杰;陈宁;卢凯 | 申请(专利权)人: | 华南理工大学;人工智能与数字经济广东省实验室(广州) |
| 主分类号: | G01S13/58 | 分类号: | G01S13/58;G06F18/2321 |
| 代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 黄月莹 |
| 地址: | 510640 广*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 毫米波 雷达 道路 车道 识别 方法 | ||
本发明公开了一种基于毫米波雷达点云的车道线识别方法,主要包括毫米波雷达交通目标信息解析、交通目标有效行驶轨迹提取、车道线聚类和车道线拟合四个阶段:毫米波雷达交通目标信息解析主要是将获取到的原始点云处理成所需要的数据格式;交通目标有效行驶轨迹提取主要是在大量轨迹中抽取特征方向的轨迹,能够避免大量原始轨迹参与计算,提高计算效率;根据DBSCAN密度聚类算法进行交通目标轨迹整体聚类,将属于同一个车道线的轨迹分为一类,求取该类的平均轨迹;最后将平均轨迹进行曲线拟合,将相邻的两条车道中心线取平分线即可得到车道线。
技术领域
本发明涉及智能交通技术领域,特别涉及一种基于毫米波点云识别道路车道线的方法。
背景技术
车道线是交通领域的重要组成部分,对车路协同、自动驾驶等智能交通领域有着不可或缺的作用。目前,毫米波雷达广泛应用于智能交通领域,将毫米波雷达安装在交叉路口或者道路上,根据检测范围调整雷达的位置可实现多目标多车道多交通参数的检测,如车流量、行驶速度、车型、排队长度等,可以实现交叉路口交通状态的全方位检测。车道线检测为智能交通系统提供路面信息,实现驾驶行为的检测以及车辆的连续跟踪具有重要的意义。
目前针对车道线识别的技术方案主要有两类:一类是基于视频图像检测,这种方法大多采用基于边缘提取技术或者机器视觉技术,一种基于点聚类的车道线检测方法(201610195295),利用路边摄像头数据,通过进行点聚类,将霍夫检测直线用到的坐标变换思想应用到车道线检测中。然而由于车道线会随着使用年限的增加而出现磨损,同时相机易受到外界因素的影响,如光照、雾霾、夜晚、雨雪等,会造成图像模糊而导致道路车道线无法检测。
另一类是基于激光雷达检测,这种方法大多根据激光雷达反射的强度信息或者使用回波脉冲宽度特征进行车道线特征提取,不易受外界环境的影响且检测精度较高,一种基于激光雷达的车道线检测方法(201910127877),对点云数据进行分层处理,使用局部方差法提取车道线,但是激光雷达扫描车道线时会受到绿化带或者其他车辆干扰,导致检测结果出现偏差,同时激光雷达的价格也十分昂贵。毫米波雷达作为一个可以全天候工作的传感器,检测精度高,有较强的抗干扰能力,可以很好地适应各种不同的场景,克服摄像头在外界因素的缺陷,同时价钱也低于激光雷达。
发明内容
本发明的目的是针对现有提出车道线技术的缺点与不足,提供一种基于毫米波雷达点云提取车道线的方法,在没有其他额外检测信息的情况下,仅依赖于雷达提供的车辆轨迹数据,建立一种基于毫米波雷达的车道线识别方法,可以在不同外界环境条件下检测出车道线,即使道路车道线已经磨损不清晰,该方法也可以进行车道线提取,可适用于多种场景。
本发明至少通过如下技术方案之一实现。
一种基于毫米波雷达点云的道路车道线识别方法,包括以下步骤:
S1、获取探测范围内交通目标的原始点云,将采集到的原始点云数据进行解析获取交通参数信息,同时通过坐标转换对发生倾斜的车辆运动轨迹进行修正,使其变为竖直状态;
S2、利用毫米波雷达捕获的离散点云,通过关联来表征探测区域内交通目标的连续运动轨迹,从轨迹中基于长度特征、运动角度特征、速度特征筛选有效轨迹,得到交通目标轨迹密度图;
S3、对筛选得到的交通目标有效轨迹进行轨迹聚类,将属于同一个车道线的轨迹分为一类,求取每个类中交通目标的平均行驶轨迹,得到每个车道的中心线;
S4、将相邻的两条车道中心线取平分线,平分线集合中的中心点坐标进行最小二乘法曲线拟合,得到车道线。
进一步的,步骤S1的解析包括:
将采集到的数据根据协议解析得到检测响应集合为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学;人工智能与数字经济广东省实验室(广州),未经华南理工大学;人工智能与数字经济广东省实验室(广州)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202211501661.3/2.html,转载请声明来源钻瓜专利网。





