[发明专利]一种基于隐空间插值的柔性线缆状态预测与控制系统在审

专利信息
申请号: 202211402664.1 申请日: 2022-11-10
公开(公告)号: CN115990875A 公开(公告)日: 2023-04-21
发明(设计)人: 董敏;江煊璐;毕盛;曹瑞东 申请(专利权)人: 华南理工大学
主分类号: B25J9/16 分类号: B25J9/16;B25J18/00;G06V20/00;G06V10/56;G06V10/34;G06V10/26;G06V10/82;G06N3/0464;G06N3/048;G06N3/09
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 冯炳辉
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 空间 柔性 线缆 状态 预测 控制系统
【说明书】:

发明公开了一种基于隐空间插值的柔性线缆状态预测与控制系统,包括:轨迹数据集采集模块,用于采集机器人操控柔性线缆过程的原始轨迹序列,包括每个时刻的线缆状态原始图像及机器人动作;状态图像预处理模块,用于对线缆状态原始图像进行裁剪、提取、膨胀等预处理,得到线缆状态图像;下一时刻线缆状态预测模块,利用变分自编码器学习线缆状态图像的隐空间,基于隐空间插值的方法生成下一时刻线缆状态图像;行为策略模块,根据当前时刻线缆状态图像及下一时刻线缆状态图像生成当前时刻机器人动作。本发明有利于机器人在真实场景中利用随机生成的轨迹数据进行柔性线缆控制技能的学习。

技术领域

本发明涉及机器人装配的技术领域,尤其是指一种基于隐空间插值的柔性线缆状态预测与控制系统。

背景技术

在机器人市场规模不断扩大的背景下,智能机器人的应用前景广泛。工业机器人在自动化装配中承担着重要的角色。装配作为自动化生产制造的最后一个环节,目前已实现自动化或半自动化。目前自动化装配中涉及的物体一般为刚性物体。刚性物体在受控过程中不易产生形变,因此,在操控任务中一般只考虑其位姿状态,在仿真环境中容易对其进行建模。柔性线缆是具有非线性特性的柔性物体,在各电气系统间起着传递电力与信号的作用,其本身具有结构复杂、规格繁多、多品种、小批量、制造过程自动化程度低等特点。柔性线缆具有明显的非线性特征,在环境中与刚性体力学特征不同。通常在非线性因素较弱的系统中,可以对柔性线缆进行简化甚至忽略,然而,在追求高稳定和高可靠性的设备中,这种处理方式可能会引起较大的误差。目前线缆建模的常用方法有:基于质点弹簧模型的方法、基于弹性细杆力学模型的方法、有限元模型的方法等,但存在建模精度低或计算量大等缺点,因此建立柔性线缆的仿真环境较为困难。

传统的机器人装配技能学习主要采用示教器编程、离线编程等,这样学习到的技能单一,适用范围小,只能够完成预设好的特定任务,而且不能够与外界环境进行交互,不具备理解环境的能力和学习技能的能力。如果在装配任务中外部环境发生了变化,机器人的操作并不能做出相应的改变来完成新的任务,需要重新更改预设程序,导致程序的可复用性差。具备学习能力的智能机器人,通常称为“智能体”。在复杂可变的环境中,强化学习、模仿学习已经成为智能体学习技能的通用方法。强化学习方法一般可以分为在线强化学习、离线强化学习。在线强化学习需要智能体能与真实的环境进行互动并通过获取更高的奖励更新智能体的行为策略,在真实场景的操纵任务中进行探索可能会产生危险的行为,而在仿真环境中学习到的技能又难以迁移到真实场景中;离线强化学习需要大量智能体与环境互动的轨迹数据,智能体从轨迹数据中学习行为策略,但容易受到轨迹数据与真实环境分布差异的影响,对数据集质量要求高。模仿学习从专家的轨迹数据中学习,但不涉及奖励函数,通常可分为行为克隆和逆强化学习。行为克隆通过监督学习的方法学习直接学习专家技能,这种方法效率高,但存在误差累积、泛化性差等缺点;逆强化学习则先学习奖励函数,并使用学习到的奖励函数指导行为策略的学习,其泛化能力较强,但在训练过程中其效果难以收敛到最佳。

综上所述,若智能体在真实场景中通过在线强化学习获取操纵技能,在进行动作探索的过程中容易产生危险的行为,例如机械臂的碰撞等;而离线强化学习及模仿学习需要大量机器人较优轨迹数据或专家操纵机器人的演示数据,人为采集较优的轨迹数据或专家演示数据需要大量的时间成本;并且,同时操纵两个及以上的机械臂会给操纵者带来很大程度上的认知困难,所以当前难以获取多机械臂的专家示范数据。

发明内容

本发明的目的在于克服现有技术的缺点与不足,提出了一种基于隐空间插值的柔性线缆状态预测与控制系统,该系统能够自动采集机器人执行随机动作的轨迹序列,克服了传统示教学习中需要采集专家示范数据的困难;基于变分自编码器,学习轨迹序列中线缆状态图像的隐空间,通过在隐空间进行插值来获得当前线缆状态和目标线缆状态之间的中间状态,作为下时刻的目标,避免了传统强化学习中轨迹的偏离;基于行为克隆的思想,通过监督学习对轨迹序列中的状态转移进行建模,得到行为策略模型;通过下时刻目标预测与行为策略模型,该系统提高了动作执行的效率和行为策略的泛化能力。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202211402664.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top