[发明专利]基于脑电波信号的情绪分类方法及装置在审
申请号: | 202211373413.5 | 申请日: | 2022-11-04 |
公开(公告)号: | CN115422983A | 公开(公告)日: | 2022-12-02 |
发明(设计)人: | 刘伟华;李娇娇 | 申请(专利权)人: | 智慧眼科技股份有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 深圳众鼎汇成知识产权代理有限公司 44566 | 代理人: | 朱业刚 |
地址: | 410205 湖南省长沙市高新*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 脑电波 信号 情绪 分类 方法 装置 | ||
1.一种基于脑电波信号的情绪分类方法,其特征在于,包括:
获取第一脑电波信号,其中,所述第一脑电波信号包括至少一路用于监测第一样本对象的脑部的电极信号;
对所述第一脑电波信号按照预设时间周期进行采样,得到由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图;其中,所述对所述第一脑电波信号按照预设时间周期进行采样,得到由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图,包括:分别对所述第一脑电波信号按照第1至N预设时间周期进行采样,得到由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的第1至N子时序特征图,其中,N为大于或等于2的正整数,不同的预设时间周期对应的时间周期长度不同;基于N个子时序特征图,确定由N组离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图;
利用注意力机制,基于所述时序特征图,确定由不同时序信息对应的所述第二脑电波信号的权重信息构建的时序权重特征图,所述时序权重特征图用于表征时序特征图中各特征向量对应的权重;
基于所述第二脑电波信号、所述时序权重特征图以及分类模型,确定所述第一脑电波信号对应的情绪分类标签,其中,所述分类模型为基于第二样本对象的脑电波信号训练得到的机器学习模型。
2.根据权利要求1所述的方法,其特征在于,所述基于N个子时序特征图,确定由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图,包括:
基于N个子时序特征图,确定各个时序特征向量与相邻的时序特征向量之间的差分熵;
根据各个时序特征向量与相邻的时序特征向量之间的差分熵,确定由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图。
3.根据权利要求2所述的方法,其特征在于,所述根据各个时序特征向量与相邻的时序特征向量之间的差分熵,确定由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图,包括:
根据各个时序特征向量与相邻的时序特征向量之间的差分熵,对由离散的多个第二脑电波信号进行滤波处理,以确定由离散的多个第二脑电波信号以及所述第二脑电波信号对应的时序信息构建的时序特征图。
4.根据权利要求1至3任一项所述的方法,其特征在于,所述利用注意力机制,基于所述时序特征图,确定由不同时序信息对应的所述第二脑电波信号的权重信息构建的时序权重特征图,包括:
确定所述时序特征图对应的各个时序特征向量在注意力机制中映射的查询向量、键向量和值向量;
根据各查询向量和各键向量,确定时序特征图中不同时序信息对应的第二脑电波信号的权重信息;
根据所述权重信息以及所述权重信息对应的时序特征向量的值向量,确定由不同时序信息对应的所述第二脑电波信号的权重信息构建的时序权重特征图。
5.根据权利要求4所述的方法,其特征在于,所述根据各查询向量和各键向量,确定时序特征图中不同时序信息对应的第二脑电波信号的权重信息,包括:
根据所述时序特征图中的第一时序特征向量对应的第一查询向量和各键向量,得到各时序特征向量与所述第一时序特征向量关联的各第一权重,以此类推,根据第M时序特征对应的第M查询向量和各键向量,得到各时序特征向量与所述第M时序特征向量关联的各第M权重;并对各时序特征向量上的权重进行加权处理,以确定时序特征图中不同时序信息对应的第二脑电波信号的权重信息,其中,M为时序特征图中时序特征向量的总数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于智慧眼科技股份有限公司,未经智慧眼科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202211373413.5/1.html,转载请声明来源钻瓜专利网。