[发明专利]一种基于LWE的加密方法在审
申请号: | 202211122179.9 | 申请日: | 2022-09-15 |
公开(公告)号: | CN115499127A | 公开(公告)日: | 2022-12-20 |
发明(设计)人: | 梁志强;刘志雄 | 申请(专利权)人: | 福建省闽保信息技术有限公司 |
主分类号: | H04L9/30 | 分类号: | H04L9/30;H04L9/00 |
代理公司: | 福州市景弘专利代理事务所(普通合伙) 35219 | 代理人: | 徐宝珺 |
地址: | 350001 福建省福州市鼓*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 lwe 加密 方法 | ||
一种基于LWE的加密方法,包括如下步骤,获取LWE问题的安全参数n,根据所述安全参数n,依次计算出m、q、B的值,其中q为模参数,B满足q/4mB;B为误差上限,m为线性方程组的方程组数,而n代表了每个方程中有多少个未知数;上述方案的加密逻辑全部基于线性方程\线性矩阵,其运算大多是线性运算,因此本申请的算法方案比现有传统方案运算速度更快,且至少目前不存在解决LWE困难问题的多项式量子算法,从而本加密体系可以有效抵御量子攻击从而提升方案的安全性。
技术领域
本发明涉及信息技术领域,尤其涉及一种能够自动化生成密钥并提升方案的可靠性的方法及存储介质。
背景技术
传统区块链加密机制是:用SHA和ECDSA算法进行数据签名,hash算法以及Base58编码算法进行加密等等,这些算法在量子计算面前不堪一击,对现行的区块链平台造成很大的安全隐患,加密体系的安全性是区块链面临量子计算的到来必须逾越的课题。
发明内容
为此,需要提供一种能够进行密码的生成和加密的方法,从而更好地进行区块链领域中进行强的技术效果。
为实现上述目的,发明人提供了一种基于LWE的加密方法,包括如下步骤,
获取LWE问题的安全参数n,根据所述安全参数n,依次计算出m、q、B的值,其中q为模参数,B满足q/4mB;B为误差上限,m为线性方程组的方程组数,而n代表了每个方程中有多少个未知数;
然后随机选取LWE问题中所需的矩阵e=(xB)T,矩阵A的维度为m×n,s为随机向量,为向量e的无限范数,xB为一个最大值封顶为B的随机分布,Zq为(-q/2,q/2)范围的一个素数有限域;
计算出误差b=As+e%q;
加密步骤:
对每一个二进制位单独进行加密,且每次只可以处理一个bit。随机选取一个nonce向量通过Regev算法计算出密文的第一部分c0=rTA;随后再计算出密文的第二部分c1=rTb+(q/2)x;最终(c0,c1)即为输出的加密密文;
解密步骤:
令z=c1-c0·s,判断z是否q/4,如果是,则输出解密成功的结果,否则输出解密失败的结果。
在本申请的一些实施例中,输出密钥步骤:输出私钥sk=s,公钥pk=(A,b)。
在本申请的一些实施例中,m是n的一个多项式倍数,m=poly(n)。
在本申请的一些实施例中,q也是n的一个多项式倍数,设置为O(n2)。
在本申请的一些实施例中,还包括步骤,所述向量e的维度为m。
通过上述方案,安全参数n的取值可以随机化生成,也可以通过人工方式进行设定,n的具体取值可以设计在内存之中,获取安全参数n的步骤可以通过调用内存来实现。m的取值随着n的变动而改变,m可以是n的多项式时间,q可以设置为n的二次多项式时间。随着m的增大,误差上限Bq,B决定和可以相差多少。上述方案的加密逻辑全部基于线性方程\线性矩阵,其运算大多是线性运算,因此本申请的算法方案比现有传统方案运算速度更快,且至少目前不存在解决LWE困难问题的多项式量子算法,从而本加密体系可以有效抵御量子攻击从而提升方案的安全性。
上述发明内容相关记载仅是本申请技术方案的概述,为了让本领域普通技术人员能够更清楚地了解本申请的技术方案,进而可以依据说明书的文字及附图记载的内容予以实施,并且为了让本申请的上述目的及其它目的、特征和优点能够更易于理解,以下结合本申请的具体实施方式及附图进行说明。
附图说明
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福建省闽保信息技术有限公司,未经福建省闽保信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202211122179.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种智能动态平板灯
- 下一篇:一种锌铝镁镀层、锌铝镁镀层钢板