[发明专利]基于光谱约束和残差注意力网络的高光谱全色锐化方法在审

专利信息
申请号: 202210873617.9 申请日: 2022-07-24
公开(公告)号: CN115100075A 公开(公告)日: 2022-09-23
发明(设计)人: 冯婕;周子昱;焦李成;张向荣;尚荣华;李阳阳;王蓉芳;慕彩虹 申请(专利权)人: 西安电子科技大学
主分类号: G06T5/00 分类号: G06T5/00;G06T5/50;G06T11/00;G06V10/58;G06V20/10;G06V10/80;G06V10/82;G06N3/04;G06N3/08
代理公司: 陕西电子工业专利中心 61205 代理人: 田文英;王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 光谱 约束 注意力 网络 全色 锐化 方法
【权利要求书】:

1.一种基于光谱约束和残差注意力网络的高光谱全色锐化方法,其特征在于,采用深度反投影网络对低分辨率高光谱图像块进行语义信息提取和空间上采样对齐,对单通道全色图像与多通道高光谱图像进行逐通道直方图匹配扩充通道和光谱对齐,构建含有不同大小卷积核的卷积模块和三维注意力模块的残差注意力网络,构造一个同时含有空间约束损失和光谱约束项的损失函数作为网络总损失函数;该高光谱全色锐化方法的步骤包括如下:

步骤1.生成训练集:

步骤1.1,将一张高光谱图像均分为N个互不重叠的标准高光谱图像块,N≥10;

步骤1.2,根据Wald协议要求,对每个标准高光谱图像块中可见光波段逐像素求均值得到均值图像,将均值图像块作为该标准高光谱图像块的单通道全色图像块;

步骤1.3,对每个标准高光谱图像下采样,得到低分辨率高光谱图像块;

步骤1.4,将每个标准高光谱图像块与其对应的单通道全色图像块和低分辨率高光谱图像块组成一个样本对,取T各样本对组成训练集,1≤T≤N;

步骤2.对低分辨率高光谱图像块进行空间对齐:

采用深度反投影网络对低分辨率高光谱图像块进行语义信息提取和空间上采样对齐,得到T1个上采样高光谱图像块,T1=T;

步骤3.对单通道全色图像块进行光谱对齐:

对单通道全色图像块与多通道高光谱图像块进行逐通道直方图匹配,得到光谱对齐后的T2多通道全色图像块,T2=T;

步骤4.构建残差注意力网络:

步骤4.1,搭建一个用于抑制冗余信息的三维注意力模块,其结构依次为:通道注意力子模块、第一乘法器、空间注意力子模块、第二乘法器;

所述通道注意力子模块的结构依次为:平均池化层、最大池化层、第一卷积层、第一激活函数层、第二卷积层、第二激活函数层;将平均池化层和最大池化层的计算维度均设置为1,将第一、第二卷积层的卷积核大小均设置为1*1,卷积核数量分别为16和64,滑动步长均为1,填充宽度均为0;第一激活函数层采用线性整流函数实现;第二激活函数层采用Sigmoid函数实现;

所述空间注意力子模块的结构依次为:平均池化层、最大池化层、卷积层、激活函数层;将平均池化层和最大池化层的计算维度均设置为1;卷积层的卷积核大小设置为3*3,卷积核数量为1;激活函数层采用Sigmoid函数实现;

当数据输入到三维注意力模块处理时,第一乘法器将通道注意力子模块的输出与原始输入数据进行相乘操作的结果,输入到空间注意力子模块,空间注意力子模块的输出结果与第一乘法器的相乘操作结果一起输入第二乘法器将空间注意力子模块进行乘法运算,得到三维注意力模块的整体输出数据;

步骤4.2,搭建10个结构相同的卷积模块,每个卷积模块的结构依次为:卷积层、批标准化层、激活函数层;将第一、第二、第七、第八卷积模块中卷积层的卷积核大小均设置为1*1,卷积核数量均为64,滑动步长均为1,填充宽度均为0;将第三、第四、第五、第六卷积模块卷积层的卷积核大小均设置为3*3,卷积核数量均为64,滑动步长均为1,填充宽度均为2;将第九、第十卷积模块中卷积层的卷积核大小均设置为1*1,卷积核数量均为C,C为步骤1中高光谱图像的通道数,滑动步长均为1,填充宽度均为0;第一至第十批标准化层均采用批标准化函数实现;第一至第十激活函数层均采用线性整流函数实现;

步骤4.3,将第一卷积模块、第二卷积模块、三维注意力模块、第三卷积模块、第四卷积模块、第五卷积模块、第六卷积模块、第七卷积模块、第八卷积模块、第九卷积模块、第十卷积模块级联组成残差注意力网络;

当数据输入三维注意力模块、第三、第四、第五、第六卷积模块进行处理时,使用残差运算,即将每个模块的输入特征数据和输出特征数据进行像素级数值加合作为下一模块的输入特征数据;

步骤5.训练残差注意力网络:

步骤5.1,用T1个上采样高光谱图像块逐像素减去与其对应的T2个多通道全色图像块中的像素值,得到T3张残差图像,T1、T2、T3的取值对应相等;

步骤5.2,将所有残差图像输入到残差注意力网络中,通过网络逐级前传,输出重构后的图像;

步骤5.3,用训练集样本对中的T4个标准高光谱图像块像逐素减去与其对应的T2个多通道全色图像块中的像素值,得到T5个目标图像,T4、T2、T5的取值对应相等;

步骤5.4,构造一个同时含有空间约束损失和光谱约束项的损失函数作为网络总损失函数,利用Adam算法对网络总损失函数进行优化计算并迭代更新残差注意力网络参数,得到训练好的残差注意力网络;

所述网络总损失函数L(·)如下:

其中,Θ为待训练的网络参数,LSAM(·)表示光谱约束损失函数,R和分别表示重构图像和目标图像,β表示两个损失项之间的权重参数,其取值为[0,10]范围内的任意实数,LMSE(·)表示空间约束损失函数,K表示训练集样本对的总数,Σ表示求和操作,h表示目标图像的高,w表示目标图像的宽,arccos(·)表示反余弦操作,和分别表示第k张重构图像中第p个像素对应的向量和第k'张目标图像中第q个像素对应的向量,k和k'的取值对应相等,p和q的取值对应相等,·,·表示内积操作,||·||2表示取L2范数操作,c表示目标图像的通道数,和分别表示第m张重构图像中第v个像素对应向量的第b个维度的值和第m'张目标图像中第u个像素对应向量的第d个维度的值,m和m'的取值对应相等,v和u的取值对应相等,b和d的取值对应相等;

步骤6.对高光谱图像进行全色锐化:

步骤6.1,采用与步骤2和步骤3相同的方法,对待全色锐化的高光谱图像进行处理,得到上采样高光谱图像和多通道全色图像;

步骤6.2,采用与步骤5.1相同的方法,对上采样高光谱图像和多通道全色图像进行处理,得到二者的残差图像;

步骤6.3,将残差图像输入到训练好的残差注意力网络中,输出重构图像,将重构图像与多通道全色图像加合,得到全色锐化后的高光谱图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210873617.9/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top