[发明专利]结合蒸馏学习和元学习的目标检测增量学习方法在审
| 申请号: | 202210825519.8 | 申请日: | 2022-07-13 |
| 公开(公告)号: | CN115311488A | 公开(公告)日: | 2022-11-08 |
| 发明(设计)人: | 徐卫东;冯瑞;朱善邦;李华宇 | 申请(专利权)人: | 中国人民解放军海军军医大学第一附属医院 |
| 主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/766;G06V10/46;G06V10/82;G06N3/04;G06N3/08 |
| 代理公司: | 上海德昭知识产权代理有限公司 31204 | 代理人: | 丁振英 |
| 地址: | 200082 *** | 国省代码: | 上海;31 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 结合 蒸馏 学习 目标 检测 增量 学习方法 | ||
本发明提供一种结合蒸馏学习和元学习的目标检测增量学习方法,首先对待测图像进行预处理;然后结合蒸馏学习和元学习构建新旧目标检测增量学习模型,将预处理后的待测图像作为输入进行检测从而得到新旧类别目标检测结果。其中,新旧目标检测增量学习模型基于双阶段目标检测模块构建,包括第一阶段基于蒸馏损失的前景特征提取子模块,以及第二阶段基于元学习的分类回归子模块。该方法利用双阶段目标检测模型“分段式”检测的性质,使用蒸馏学习增强了新类目标特征的提取能力,利用元学习使得新类别分类器参数优化过程与旧类别共享,使新类别分类器快速收敛,从而实现在旧类目标前景检测性能影响较少的基础上,进一步增强新类目标前景检测性能。
技术领域
本发明属于计算机视觉领域,涉及一种目标检测方法,具体涉及一种结合蒸馏学习和元学习的目标检测增量学习方法。
背景技术
目标检测技术作为计算机视觉领域的核心应用技术,旨在对输入的视频或图像上是否存在感兴趣目标类做出判断,并且在存在目标类的情况下,对目标类进行精准确定它们的大小和位置。近年来,随着深度学习的不断发展,尤其是卷积神经网络在模式识别技术上的优异表现,使得越来越多的目标检测任务能够实现高效自动化,并成功应用于实际场景中。
然而在传统的机器学习和深度学习任务中,训练数据的类别都是固定的,同时也假设测试集合的数据类别也是固定的。这将导致很多模型在测试集合明明效果很好,但是迁移能力很差。这一问题在目标检测技术的实际应用中更为明显。增量学习的目的是学习系统可以快速不断地从新样本中学习新的知识,并能保存大部分以前已经学习到的知识,类似于人类自身的学习模式。近年来,随着深度学习的不断发展,增量学习被认为是大幅度提升模型迁移能力的主要手段之一。
目前的增量学习常基于蒸馏学习技术实现。虽然利用蒸馏学习中的蒸馏损失可以成功快速对新知识进行学习。但是使用蒸馏损失也使得增量学习中新知识的学习不仅极大依赖于原始数据集,而且在新知识不断学习过程中,模型更倾向于记忆新知识,从而对旧知识产生遗忘的现场。这将导致网络在新类别上的精确度提升是以旧类别精确度大幅度降低为代价的。在现实目标检测任务中,往往是新旧类别均需要高精度的检测,因此这使得模型很难在真实场景中灵活使用。此外,也存在不同新类别训练顺序会出现严重预测精确度不一致的问题。这将使得模型性能不够稳定,很难用于真实场景中。
发明内容
为解决上述问题,提供一种能够对不同新增类别顺序、少量新增类别样本完成精确的新类别检测同时保证同样精确的旧类别检测方法,本发明采用了如下技术方案:
本发明提供了一种结合蒸馏学习和元学习的目标检测增量学习方法,其特征在于,包括以下步骤:步骤S1,对待测图像进行预处理;步骤S2,结合蒸馏学习和元学习构建新旧目标检测增量学习模型,将预处理后的待测图像输入至该模型中进行检测从而得到待测图像的新旧类别目标检测结果,其中,新旧目标检测增量学习模型基于一个双阶段目标检测模块构建,包括第一阶段基于蒸馏损失的前景特征提取子模块,以及第二阶段基于元学习技术的分类回归子模块,前景特征提取子模块包括依次设置的输入层、通用特征提取器主干网模块、区域建议网络模块和第一阶段输出层,分类回归子模块包括依次设置的感兴趣对齐池化层、回归器层、分类器层和第二阶段输出层。
在本发明提供的结合蒸馏学习和元学习的目标检测增量学习方法中,还可以具有这样的技术特征,其中,新旧目标检测增量学习模型通过如下方法获得:步骤T1,将训练集分为旧类别训练集和新类别训练集;步骤T2,构建初始旧类别目标检测增量学习模型;步骤T3,将旧类别训练集输入至初始旧类别目标检测增量学习模型训练得到对旧类别进行目标检测的旧类别目标检测增量学习模型;步骤T4,为旧类别目标检测增量学习模型增加新类别学习支路,并进行初始化得到初始新旧目标检测增量学习模型;步骤T5,将新类别训练集输入至初始新旧目标检测增量学习模型中进行训练直至达到训练完成条件得到可以同时进行新、旧类别目标检测的新旧目标检测增量学习模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军海军军医大学第一附属医院,未经中国人民解放军海军军医大学第一附属医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210825519.8/2.html,转载请声明来源钻瓜专利网。





