[发明专利]一种基于片段-序列两阶段训练框架的睡眠分期方法及系统在审

专利信息
申请号: 202210524128.2 申请日: 2022-05-13
公开(公告)号: CN114903440A 公开(公告)日: 2022-08-16
发明(设计)人: 顾娟;张丽;高阳;方建文 申请(专利权)人: 南京大学;南京脑科医院;江苏万维艾斯网络智能产业创新中心有限公司
主分类号: A61B5/00 分类号: A61B5/00;A61B5/372
代理公司: 南京泰普专利代理事务所(普通合伙) 32360 代理人: 方晓雯
地址: 210023 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 片段 序列 阶段 训练 框架 睡眠 分期 方法 系统
【说明书】:

发明面向单信道脑电数据,提出一种基于“片段—序列”两阶段训练框架的睡眠分期方法及系统,属于深度学习算法智能应用领域。将单信道脑电数据进行平滑处理、片段化以及多通道生成等步骤,利用基于脑电片段的CNN网络模型对脑电数据进行训练,得到脑电特征表示方法,并通过基于脑电“片段—序列”的“CNN‑RNN”网络模型,增强睡眠序列之间学习,通过两阶段训练框架来提升模型的睡眠分期效果,进而提升利用单信道脑电数据进行睡眠质量评估的效果。本发明基于“片段—序列”两阶段训练框架的睡眠分期方法与基于脑电片段的CNN网络模型分期相比,效果有较大提升,通过在数据集Sleep_EDFx 39的单信道Fpz‑Cz脑电数据上验证,本发明将睡眠分期的准确率从80%提升到了87%。

技术领域

本发明属于深度学习算法智能应用领域,尤其涉及一种基于“片段-序列”两阶段训练框架的睡眠分期方法及系统。

背景技术

睡眠在人的一生中占据大约1/3的时间,是人体各组织器官和神经系统休息的过程,对人的身心健康起着重要的作用。然而,全球有27%的人有睡眠障碍,我国的睡眠障碍患者的比例也越来越高。睡眠障碍易引发健康问题,增加肥胖、糖尿病、心血管疾病的患病风险,且容易诱发心理疾病。用以判断睡眠障碍和睡眠质量的基础,通常是睡眠分期。

睡眠分期,根据2007美国睡眠协会的分期标准(2017 AASM),可以分为清醒期(W)、浅睡1期(N1)、浅睡2期(N2)、深睡期(N3)、快速眼动期(REM)五个时期。睡眠存在一定的节律特点,正常周期一般为90~100分钟。入睡20分钟左右进入潜睡期,经过中度睡眠,大约在30~45分钟后进入深度睡眠阶段,然后逐渐退回到中度睡眠和浅睡,进入快速眼动阶段。

在医院中,通常使用睡眠检测仪(PSG)来监测患者的睡眠生物电信号,监测的信号包括脑电(EEG)、眼电(EOG)、心电(ECG)、肌电(EMG)等,并通过电信号分析患者的睡眠分期结果,基于睡眠分期的结果辅助诊断患者的睡眠质量。然而,在其他的场景,如居家、社区医院等,很难通过专业的PSG设备来监测睡眠质量,手环等基于心电的睡眠监测效果不如脑电数据。因此,通过单信道脑电数据进行睡眠分期监测的需求越来越强。

发明内容

发明目的:提出一种基于“片段-序列”两阶段训练框架的睡眠分期方法及系统,基于单信道脑电数据进行睡眠分期,并通过两阶段训练来提升模型的分期效果,并进一步提出一种用于实现上述方法的系统,以解决现有技术存在的上述问题。

技术方案:第一方面,提出一种基于“片段-序列”两阶段训练框架的睡眠分期方法,包括如下步骤:

步骤1、对单信道脑电数据文件进行处理,去除首尾预定长度的清醒期数据,只保留睡眠阶段的监测数据,并统一存储为EDF文件;

步骤2、将单信道脑电数据EDF文件按照比例分为两个部分,第一个部分P用作脑电片段模型和脑电序列模型的训练和验证,第二个部分R用作脑电片段模型和脑电序列模型测试;

步骤3、读取P中带有标签的单信道脑电监测数据,进行数据移动平滑处理,得到p';

步骤4、对p'数据进行片段化和多通道扩展,形成脑电片段数据集T1;

步骤5、将脑电片段数据集T1按比例划分为脑电片段训练集M1、脑电片段验证集V1;

步骤6、将脑电片段训练集M1随机打乱片段顺序,用于训练基于脑电片段的CNN 网络模型,并通过脑电片段验证集V1选择最佳的脑电片段模型结构和模型参数;

步骤7、将脑电片段最佳CNN网络模型结构和模型参数存储下来,保存后缀为“.pth”的脑电片段模型文件F1;

步骤8、将步骤3中未打乱片段顺序的脑电片段数据集T1,按照时间步t进行划分,形成脑电序列数据集T2;

步骤9、将脑电序列数据集T2按照比例划分为脑电序列训练集M2、脑电序列验证集V2;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学;南京脑科医院;江苏万维艾斯网络智能产业创新中心有限公司,未经南京大学;南京脑科医院;江苏万维艾斯网络智能产业创新中心有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210524128.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top