[发明专利]一种融合通道和空间注意力的卷积神经网络息肉分割方法在审

专利信息
申请号: 202210496738.6 申请日: 2022-05-09
公开(公告)号: CN114842029A 公开(公告)日: 2022-08-02
发明(设计)人: 束鑫;王佳树;顾迎燕;徐丹;史金龙;高尚 申请(专利权)人: 江苏科技大学
主分类号: G06T7/11 分类号: G06T7/11;G06T7/00;G06N3/04;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 柏尚春
地址: 212003 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 融合 通道 空间 注意力 卷积 神经网络 息肉 分割 方法
【权利要求书】:

1.一种融合通道和空间注意力的卷积神经网络息肉分割方法,其特征在于,包括以下步骤:

(1)准备数据集,分为训练和测试数据集;

(2)利用残差模块作为编码器提取图像的特征;

(3)利用双重挤压激励模块增强瓶颈层对高级特征的提取能力;

(4)在解码器使用通道和空间组合的注意力模块,从通道和空间两个层面上关注关键区域,从提取到的特征选择最相关的特征,抑制不相关的特征,提高分割精度;此外使用跨层融合的方式,捕获上下文信息,细化分割的边界,通过解码器,最终生成全局预测图Sg;

所述通道和空间组合的注意力模块,通过并联和嵌套两种方式将通道注意力和空间注意力融合使用;整个模块分为a,b,c三路,在通路a中,首先将输入的特征通过一个双重挤压激励模块模块进行特征增强,生成特征图Mc,然后将Mc进行两次3×3的卷积实现非线性变换,再次使用双重挤压激励模块模块进行特征增强,得到权重矩阵Mv;在通路b中,特征图进行一次1×1的卷积操作,其通道数降为原来的一半,然后再进行批归一化和一个1×1的卷积操作,通道数降为1,最后由Sigmoid函数得到空间权重Mq;在通路c中,特征图经过两次3×3的卷积操作后,通道数减半,然后再经过一个双重挤压激励模块模块处理,生成特征图Mk,通过点乘的方式,将通路b中得到的特征权重Mq与通路c中得到的特征图Mk相乘,为Mk的每个通道中各个像素分配权重,生成特征图Ms,再利用矩阵乘法,将Ms与通路a中得到的特征图Mv结合起来,生成新的特征Matt,然后,选用Matt作为权重矩阵,通过点乘的方式与Mc相乘,得到Mr,最后通过特征融合的方式,将Mc与Mr结合起来,形成该层的分割结果Mfinal,用公式可以表示为:

Mfinal=concat(Mr,Mc) (1)

其中,Mc和Mr分别表示为:

Mc=d(x) (2)

Mr=Mc·Matt (3)

Matt又可以表示为:

Matt=(Mq·Mk)×Mv (4)

其中M表示特征图,concat(·,·)表示连接操作,d(·)表示DSE操作,·表示矩阵内积,×表示矩阵外积;

(5)在瓶颈层和解码器部分,通过深监督对网络输出进行监督,在每层生成预测结果S2~S6

(6)进行网络模型训练。

2.根据权利要求1所述的一种融合通道和空间注意力的卷积神经网络息肉分割方法,其特征在于,所述步骤(1)具体为,准备数据集Kvasir-SEG和CVC-ClinicDB,并且按照9:1的比例将Kvasir-SEG和CVC-ClinicDB随机分为训练和测试数据集;准备数据集CVC-ColonDB,ETIS-LARIBPOLYPDB和CVC-T,作为测试数据集。

3.根据权利要求1所述的一种融合通道和空间注意力的卷积神经网络息肉分割方法,其特征在于,所述步骤(2)中残差模块,首先使用一个1×1的卷积对输入特征进行通道变换,得到特征图M1,然后对M1进行两次3×3的卷积操作,得到特征图M2,每一次卷积操作之后均经过批归一化和ReLU激活函数,最后将M1与M2相加,得到最终的特征图MRB

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏科技大学,未经江苏科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210496738.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top