[发明专利]基于车-路-站-网融合的电动汽车充电负荷时空分布预测方法在审
| 申请号: | 202210443741.1 | 申请日: | 2022-04-25 |
| 公开(公告)号: | CN114819345A | 公开(公告)日: | 2022-07-29 |
| 发明(设计)人: | 张谦;刘志强;朱熠;吴佳琦;李春燕 | 申请(专利权)人: | 重庆大学 |
| 主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06F30/20;G06F17/16;H02J3/00;G06F113/04 |
| 代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
| 地址: | 400044 重*** | 国省代码: | 重庆;50 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 融合 电动汽车 充电 负荷 时空 分布 预测 方法 | ||
本发明涉及基于车‑路‑站‑网融合的电动汽车充电负荷时空分布预测方法,属于电动汽车技术领域。该方法包括:S1:建立计及外部环境的EV单位里程能耗模型,获得EV单位里程能耗;S2:建立计及EV用户出行意愿的出行链修正模型;S3:建立基于万有引力模型的EV充电站选择模型;S4:建立EV充电负荷计算模型:结合步骤S2获得的修正后EV出行链和OD矩阵以获得EV非充电行驶路径选择,从而模拟EV在各时刻的位置,当EV产生充电需求时,基于步骤S3的EV充电站选择模型确定EV的充电目的地;最后结合步骤S1获得的EV单位里程能耗,确定EV充电需求的时空分布。本发明能实现区域内充电负荷时空分布的准确预测。
技术领域
本发明属于电动汽车技术领域,涉及一种基于车-路-站-网融合的电动汽车充电负荷时空分布预测方法。
背景技术
大规模电动汽车(Electric vehicle,EV)的无序接入,给电力系统带来负荷增长、电能质量下降、电网运行优化控制难度增加等不利影响,因此对充电站规划要求越来越高。现有研究常通过有序充电控制解决上述问题,而有序充电控制以电动汽车充电需求时空分布的准确预测为基础。如何有效考虑来自电动汽车、路网、充电站及配电网等多方信息,准确计算电动汽车充电负荷时空分布是当前电动汽车发展需要研究的重点问题之一。
目前,EV充电负荷时空分布研究主要从EV运行规律出发,结合出行链和用户意愿开展。文献“温剑锋,陶顺,肖湘宁,等.基于出行链随机模拟的电动汽车充电需求分析[J].电网技术,2015,39(06):1477-1484”从用户行驶规律出发,通过拟合用户出行链特征量来计算区域内充电需求。文献“李瑶虹,陈良亮,刘卫东,等.基于用户出行链和调控意愿的城市级私家电动汽车调控能力评估[J].电力建设,2021,42(05):100-112”和“罗江鹏,张玮,王国林,等.基于出行链数据的电动汽车充电需求预测模型[J].重庆理工大学学报(自然科学),2020,34(06):1-8”用模糊推理建立用户参与充放电调控的意愿模型,并计算考虑EV用户参与意愿度下的实际调控能力水平。但是此类文献通常假定EV车用户就近充电,对实时动态交通流分布和外部因素如天气、环境温度等对用户出行意愿及路径选择影响考虑不足。另一方面,目前的研究大多直接对区域内的EV保有量进行假设,或者默认EV总量已知。然而随着环境变化,即使区域内的保有量已知,用户出行必然对原有EV数量造成一定的影响。因此,考虑用户出行意愿的EV出行数量和出行链变化在研究EV充电负荷时空分布时不可忽视。
同时,虽文献“于海洋,张路,任毅龙.基于出行链的电动汽车充电行为影响因素分析[J].北京航空航天大学学报,2019,45(09):1732-1740”对影响EV充电行为的多种潜在因素进行了研究,但对区域内充电站位置不同导致EV行驶轨迹的变化,进而改变荷电状态的时空分布的研究较少。文献“林晓明,钱斌,肖勇,等.考虑网商车多方需求和决策行为特性的电动汽车有序充电[J].电力自动化设备,2021,41(03):136-143”和“葛少云,申凯月,刘洪,等.考虑网络转移性能的城市快速充电网络规划[J].电网技术,2021,45(09):3553-3564”从客观因素,如距离、行驶速度等来确定用户对EV充电站的选择,却忽略了用户的主观意愿,如充电站的规模、排队时间等对用户选择的潜在影响。并且大多研究未考虑大规模用户对不同位置充电站的选择导致EV荷电状态时空分布的变化。故考虑用户意愿的充电站选择在研究EV充电负荷时空分布时也不可忽略。
发明内容
有鉴于此,本发明的目的在于提供一种基于车-路-站-网融合的电动汽车充电负荷时空分布预测方法,解决现有电动汽车充电负荷时空分布研究中对电动汽车、路网、充电站和配电网等多方因素间相互影响考虑不足,导致负荷预测不准确的问题。通过考虑区域内动态交通流和环境温度等因素对EV能耗和用户出行意愿的影响,建立EV与路网融合的单位里程能耗模型和出行链修正模型;计及多个充电站对用户行驶路径选择的影响,以及大规模EV用户充电站选择的相互影响,建立基于万有引力的EV充电需求负荷时空分布模型,实现计及车-路-站-网多方信息融合下的EV充电负荷时空分布预测。
为达到上述目的,本发明提供如下技术方案:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210443741.1/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理





