[发明专利]一种基于有机硅与H2 在审
| 申请号: | 202210260615.2 | 申请日: | 2022-03-16 |
| 公开(公告)号: | CN114558422A | 公开(公告)日: | 2022-05-31 |
| 发明(设计)人: | 钟娅玲;汪兰海;陈运;唐金财;钟雨明 | 申请(专利权)人: | 浙江天采云集科技股份有限公司 |
| 主分类号: | B01D53/08 | 分类号: | B01D53/08;C01B3/56 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 314400 浙江省嘉兴市海宁*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 有机硅 base sub | ||
1.一种基于有机硅与H2反应的SiC-CVD外延尾气提氢与循环再利用方法,其特征在于,所述的FTrSRMPSA(全温程模拟旋转移动床变压吸附)系统是由n(4≤n≤20的自然整数)个装载有多种吸附剂且具有一定高径比的轴向流固定床层吸附塔,且安置在一个以旋转速度(ω2,秒(s)为单位)的圆环形旋转托盘上的吸附塔、有m(6≤m≤36的自然整数)个通道并安置在圆环形旋转托盘中央以旋转速度(ω1,秒(s)为单位)旋转的多通道旋转阀、多通道旋转阀与系统外物料气体进出的物料管道以及连接于经圆环形托盘内置管道至吸附塔上下与多通道旋转阀之间的工艺管道,以及相应的驱动圆环形旋转托盘及多通道旋转阀旋转方向及其调控其旋转速度(ω1与ω2)的驱动机构、缓冲罐、加热器/冷却器/换热器、真空泵/冷凝器/增压机所构成而形成一个FTrSRMPSA系统,其特征在于,吸附塔进出口与m通道旋转阀进出口连接的管道是通过预设在圆环形旋转托盘的内置管道相连形成工艺管道且与m通道旋转阀通道数m相同,进出FTrSRMPSA系统物料气体的位置是由m通道旋转阀旋转的通道加以交替分配来固定,其物料气体包括SiC-CVD外延尾气为原料气(F)、H2产品气(H2PG)、冲洗气(P)、终充气(FR),以及逆放(D)气或/与抽真空气(V)或/与冲洗废气(PW)组成的解吸气(D),并相应的连接包括缓冲罐(器)、加热器/冷却器/换热器/增压机/抽真空泵/循环泵在内的设备,由m通道旋转阀进出口与吸附塔进出口之间通过圆环形旋转托盘中内置管道连接的工艺管道中工艺气体流动的位置是移动变化的,工艺气体是在FTrSRMPSA系统内流动,包括原料气(F)、H2产品气(H2PG)、冲洗气(P)、均压降气(ED)、顺放气(PP)、逆放气(D)气或/与抽真空气(V)或/与冲洗废气(PW)组成的解吸气(D)、均压升气(ER)以及终充气(FR),具体的SiC-CVD外延尾气为原料气(F)的变压吸附的吸附与解吸循环过程为,来自FTrSRMPSA系统外的常温常压的SiC-CVD外延尾气,经过由除尘器、除颗粒过滤器、除油雾捕集器组成的预处理工序初步净化后得到的净化外延尾气,并经换热或加热至60~130℃、压缩增压至0.2~4.0MPa后作为原料气(F),进入m通道旋转阀中的原料气(F)通道进口,并经m通道旋转阀原料气(F)通道及出口、圆环形旋转托盘内置管道及圆环形旋转托盘上对应的处于吸附状态的一个或多个轴向流固定床吸附塔进口连接的工艺管道,从吸附塔底部进入进行吸附(A)步骤,经过m通道旋转阀旋转方向及旋转速度(ω1)与圆环形旋转托盘旋转方向及旋转速度(ω2)之间的调控匹配连续地步进,从吸附塔顶部流出的非吸附相气体经工艺管道进入m通道旋转阀H2产品气(H2PG)通道,并从m通道旋转阀H2产品气(H2PG)通道流出,或经换热冷后进入H2产品气(H2PG)缓冲罐后输出直接使用,H2产品气(H2PG)的纯度大于等于99.99%,或直接或加热至150~450℃后进入氢气纯化系统进一步净化至满足SiC-CVD外延工艺所需的纯度为99.999~99.999999%(5~7N级)的电子级H2循环使用,处于吸附状态的吸附塔在完成吸附(A)步骤后,随着m通道旋转阀与圆环形旋转托盘继续旋转步进,结束吸附(A)步骤的吸附塔进入或顺放(PP)或/与均压降(ED)步骤,顺放(PP)步骤流出的顺放气(PP)作为冲洗气(P)流经圆环形旋转托盘内置管道、m通道旋转阀顺放气(PP)通道、圆环形旋转托盘其它内置管道以及其它处于冲洗(P)步骤的吸附塔进行冲洗(P),结束顺放(PP)步骤的吸附塔,随后对另一个处于均压升(ER)状态的吸附塔通过系统内的工艺管道进行均压降(ED),结束均压降(ED)步骤的吸附塔,随着m通道旋转阀与圆环形旋转托盘持续地旋转步进而进入逆放(D)或/与抽真空(V)或/与冲洗(P)步骤,从吸附塔流出的逆放气(D)或/与抽真空气(V)或/与冲洗废气(PW)所形成的解吸气(D),流经圆环形旋转托盘内置管道以及m通道旋转阀逆放气(D)/抽真空气(V)/冲洗废气(PW)通道及其出口端流出所形成的解吸气(D)作为浓缩气(CG),或直接进入焚烧系统焚烧处理,或经换热或直接进入包括HCl/氯硅烷喷淋吸收、HCl精馏/氯硅烷中浅冷精馏工序在内的HCl-氯硅烷分离系统,进一步回收HCl与氯硅烷,并返回至SiC-CVD外延工艺循环使用,结束逆放(D)或/与抽真空(V)或/与冲洗(P)步骤的吸附塔,随着m通道旋转阀与圆环形旋转托盘连续不断地旋转步进而进入均压升(ER)及/或等待(-)步骤,从处于均压降(ED)步骤的吸附塔流出并经圆环形旋转托盘内置管道及m通道旋转阀均压降气(ED)通道而进入处于均压升(ER)步骤的吸附塔进行均压,使得处于均压升(ER)步骤的吸附塔内的压力与处于均压降(ED)步骤的吸附塔内的压力相等为止,结束均压升(ER)或/与等待区(-)步骤的吸附塔,随着m通道旋转阀与圆环形旋转托盘进一步连续旋转而进入终充(FR)步骤,来自系统外的终充气(FR)流经m通道旋转阀的终充气(FR)通道与圆环形旋转托盘内置管道进入吸附塔进行充压直至吸附塔内的压力达到吸附(A)步骤所需的吸附压力为止,即,吸附塔的操作经历了由吸附(A)-顺放(PP)/均压降(ED)-逆放(D)/抽真空(V)-冲洗(P)-均压升(ER)/等待(-)-终充(FR)步骤构成的吸附与解吸的循环过程,并准备下一轮吸附与解吸的循环操作,其中,每一个吸附塔或进行一个步骤或多个步骤且进行每一步骤,均通过旋转阀旋转方向及旋转速度(ω1)与圆环形旋转托盘旋转方向及旋转速度(ω2)之间的调控匹配,使得旋转中的m通道旋转阀中m个通道与圆环形旋转托盘旋转中的n个吸附塔吸附与解吸的循环操作中的时序表首尾连接成圆,并完整地形成变压吸附(PSA)吸附与解吸过程的操作循环性,所有的物料气体及工艺气体被均匀交替地分布在系统中的m通道旋转阀中m个圆通道与圆环形旋转托盘中内置管道及各个吸附塔内,并将一个循环周期的变压吸附(PSA)通过旋转的m通道旋转阀(ω1)与接通的相应旋转的圆环形旋转托盘(ω2)上吸附塔分别同时进行吸附与解吸过程中的各个步骤,进出吸附塔的工艺气体位置是通过旋转阀旋转方向及旋转速度(ω1)与圆环形旋转托盘旋转方向及旋转速度(ω2)匹配而不断地变化,使得每个吸附塔重复吸附与解吸步骤,相当于每个固定床吸附塔在m通道旋转阀与圆环形旋转托盘旋转的同时完成各自的吸附与解吸步骤,进而形成了“模拟旋转移动床”的变压吸附过程,由此,从SiC-CVD外延尾气中获得的H2产品气(H2PG),纯度大于等于99.99%,收率大于等于85%1。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江天采云集科技股份有限公司,未经浙江天采云集科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210260615.2/1.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





