[发明专利]基于人工智能的行人重识别方法、装置、设备及存储介质在审
申请号: | 202210256790.4 | 申请日: | 2022-03-16 |
公开(公告)号: | CN114639165A | 公开(公告)日: | 2022-06-17 |
发明(设计)人: | 郑喜民;朱翌;舒畅;陈又新 | 申请(专利权)人: | 平安科技(深圳)有限公司 |
主分类号: | G06V40/20 | 分类号: | G06V40/20;G06V40/10;G06V10/764;G06V10/80;G06V10/82;G06K9/62;G06N3/04 |
代理公司: | 深圳市明日今典知识产权代理事务所(普通合伙) 44343 | 代理人: | 王杰辉;曹勇 |
地址: | 518000 广东省深圳市福田区福*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 人工智能 行人 识别 方法 装置 设备 存储 介质 | ||
1.一种基于人工智能的行人重识别方法,其特征在于,所述方法包括:
获取目标图像;
将所述目标图像输入预设的特征提取模型,得到每个特征输出模块输出的待分析特征向量,其中,所述特征提取模型包括:特征金字塔和多个所述特征输出模块,所述特征金字塔分别与每个所述特征输出模块连接;
将每个所述待分析特征向量输入预设的分类预测模块进行分类概率预测,得到分类概率预测结果;
根据目标特征向量和预设的相似图像数量,从预设的人体图像库中确定相似人体图像集,其中,所述目标特征向量是任一个所述待分析特征向量;
针对各个所述相似人体图像集中的每张人体图像,将各个所述分类概率预测结果和各个所述分类预测模块的权重进行加权求和,得到软投票评分;
根据各个所述软投票评分,确定行人重识别结果。
2.根据权利要求1所述的基于人工智能的行人重识别方法,其特征在于,所述将所述目标图像输入预设的特征提取模型,得到每个特征输出模块输出的待分析特征向量的步骤,包括:
将所述目标图像输入所述特征金字塔的第1个特征提取层,得到第1个特征初始向量;
将第i-1个所述特征初始向量输入所述特征金字塔的第i个所述特征提取层,得到第i个所述特征初始向量,其中,i大于1并且小于n+1,n是个大于2的整数;
将第n个所述特征初始向量输入所述特征金字塔的第1个特征融合层进行特征处理,得到第1个融合特征向量;
将第k-1个所述融合特征向量和第n-k+1个所述特征初始向量输入所述特征金字塔的第k个所述特征融合层进行特征融合,得到第k个所述融合特征向量,其中,k是大于1并且小于n;
将第m个所述融合特征向量输入第m个所述特征输出模块进行特征输出,得到第m个所述待分析特征向量,其中,m大于0并且小于n。
3.根据权利要求2所述的基于人工智能的行人重识别方法,其特征在于,所述将第n个所述特征初始向量输入所述特征金字塔的第1个特征融合层进行特征处理,得到第1个融合特征向量的步骤,包括:
采用第1个所述特征融合层的通道扩展卷积核,对第n个所述特征初始向量进行通道扩展,得到第1个所述融合特征向量,其中,所述通道扩展卷积核为1*1卷积核;
所述将第k-1个所述融合特征向量和第n-k+1个所述特征初始向量输入所述特征金字塔的第k个所述特征融合层进行特征融合,得到第k个所述融合特征向量的步骤,包括:
采用第k个所述特征融合层的所述通道扩展卷积核,对第n-k+1个所述特征初始向量进行通道扩展,得到第k个所述通道扩展特征;
将第k-1个所述融合特征向量输入第k个所述特征融合层的最近邻插值处理子层进行等比例放大,得到第k个等比例放大特征;
将第k个所述通道扩展特征和第k个所述等比例放大特征进行融合处理,得到第k个所述融合特征向量。
4.根据权利要求2所述的基于人工智能的行人重识别方法,其特征在于,所述将第m个所述融合特征向量输入第m个所述特征输出模块进行特征输出,得到第m个所述待分析特征向量的步骤,包括:
采用第m个所述特征输出模块的混叠效应消除层,对第m个所述融合特征向量进行混叠效应消除,得到第m个已消除混叠效应特征向量,其中,所述混叠效应消除层为3*3卷积核;
将第m个所述已消除混叠效应特征向量输入第m个所述特征输出模块的池化层进行池化处理,得到第m个所述待分析特征向量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210256790.4/1.html,转载请声明来源钻瓜专利网。