[发明专利]基于加权密度峰值聚类算法的光纤非线性补偿方法有效

专利信息
申请号: 202210041295.1 申请日: 2022-01-14
公开(公告)号: CN114513252B 公开(公告)日: 2023-06-20
发明(设计)人: 易安林;杨建波;闫连山;罗斌;蒋林 申请(专利权)人: 西南交通大学
主分类号: H04B10/079 分类号: H04B10/079;H04B10/54;H04B10/61;G06F18/23
代理公司: 佛山粤进知识产权代理事务所(普通合伙) 44463 代理人: 王余钱
地址: 610031 四*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 加权 密度 峰值 算法 光纤 非线性 补偿 方法
【说明书】:

发明提供了一种用于概率整形相干光通信系统的非线性补偿方法,利用加权的密度峰值聚类算法,对接收到的概率整形信号进行处理,包括:计算接收数据中每个对象的密度和最小相对距离,并根据概率整形分布因子给每个对象赋予权值,将三项相乘后得到的参量按从大到小排列选出密度峰值点。然后根据密度峰值点给剩下的对象分配标签。本发明可以对不均匀的概率整形信号进行聚类,有效提升系统的性能,使系统误码率得到明显改善。

技术领域

本发明涉及光纤通信领域,具体涉及一种基于加权的密度峰值聚类算法的概率整形相干光通信系统非线性补偿方法。

背景技术

在光通信系统中,非线性效应已经是目前通信系统最主要的受限因素,对于非线性损伤的补偿有数字反向传播(DBP),光学相位共轭等方法,但是这些方法要么复杂度过高,要么需要在链路中指定位置安装共轭装置导致成本过高,或者牺牲了频谱效率。近年来机器学习算法开始应用到光纤通信系统中,如K近邻、支持向量机(SVM) 、基于密度的噪声应用空间聚类算法(DBSCAN)和K均值聚类算法(K-means)等。然而这些机器学习方法都是针对标准QAM信号的,在概率整形系统中,由于分布的不均匀带来了一些新的问题,不同的簇的数据量相差很大,在对其进行聚类的时候有可能会将同一个簇的数据错误的分类成不同的簇或者将不同的簇的数据分到同一簇中。针对这种情况,提出了一种加权的密度峰值聚类算法(Weighted-DPC),根据概率整形信号中不同幅度的点出现的概率不同这一特点设置一个权重,可以更准确的找到密度峰值,从而准确的将数据分到正确的簇中。

概率整形信号的星座图是不均匀的,不同类别的数据相差很大。当不同类别的数据数量相差太大时,DPC算法可能无法正确的找到密度峰值点。在概率整形信号的星座图中,靠近外部幅度更大的簇数据点更少,内部的簇数据点则更密集,在密度峰值点选取的时候,不像均匀分布的信号那样可以直接通过参量值排序后直接选出来。因此在计算时加入权值,更准确的对数据进行聚类。

发明内容

本发明提供了一种基于加权密度峰值聚类算法的概率整形相干光通信系统非线性补偿方法,根据概率整形信号分布的特点加入权值,对接收数据准确聚类从而有效弥补信号的非线性损伤,提高系统的误码率性能。

为了达到上述目的,总体思路是:提出一种加权的密度峰值聚类算法,由于恒成分分布匹配器方案生成的概率整形信号遵循Maxwell-Boltzmann分布,幅度越大的点出现的概率越小,在密度峰值聚类算法中,确定密度峰值点时加入权值,幅度更大的点赋予更高的权重,更准确的找到信号星座外围数据点分布稀疏的簇的密度峰值点。

具体的,本发明采用的是一种基于加权的密度峰值聚类算法的概率整形相干光通信系统非线性补偿方法,包括以下步骤:

计算接收到的PS-MQAM信号数据集中每个点的密度,其中PS-MQAM信号为概率整形正交幅度调制信号;

计算数据集每个点的相对最小距离,表示的是,在数据集中所有比点i密度大的点之中,距离点i最近的点与点i的距离;

引入加权因子,并将其与密度以及相对最小距离相乘得到参量,然后将参量从大到小排序;

对于所述PS-MQAM信号数据集,取前M个对应的数据点作为密度峰值点, 将选出的M个密度峰值点作为聚类中心,其中M为所述PS-MQAM信号数据集中簇的个数;

对剩余点按密度从大到小的顺序依次进行分配,分配时,将每个剩余点分配到与它最近邻且密度比它大的数据点所在的簇。

优选的,所述通过以下公式计算:

其中j为密度比i大的点,为点i与j之间的欧式距离。

优选的,对于全局密度最大的点,是数据集所有点中离该点的距离的最大值,此时所述通过以下公式计算:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210041295.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top