[发明专利]基于行波数据深度学习的输电线路故障选线与定位方法有效
| 申请号: | 202210040970.9 | 申请日: | 2022-01-14 |
| 公开(公告)号: | CN114325245B | 公开(公告)日: | 2023-07-14 |
| 发明(设计)人: | 万望龙;王瑞;秦拯;邓名高;张吉昕;欧露;高诗慧;尹键溶 | 申请(专利权)人: | 湖南大学;湖南湘能智能电器股份有限公司 |
| 主分类号: | G01R31/08 | 分类号: | G01R31/08 |
| 代理公司: | 湖南岑信知识产权代理事务所(普通合伙) 43275 | 代理人: | 谷萍 |
| 地址: | 410000 湖*** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 行波 数据 深度 学习 输电 线路 故障 定位 方法 | ||
1.一种基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,包括如下步骤:
S1:获取多个输电线路组的时序行波数据,对所述时序行波数据标注标签后形成数据集,将所述数据集分为训练集和测试集;
S2:提取所述数据集的特征,然后将提取的特征及其标签送入循环神经网络模型进行多次迭代训练,将训练好的模型采用所述测试集进行测试,得到输电线路故障选线模型;
S3:针对任意线路组内的线路故障,采用所述输电线路故障选线模型确定故障线路,然后将故障线路的行波数据两等分形成两个滑动窗口,逐渐减小其中一个所述滑动窗口的大小,此时另外一个滑动窗口的大小对应增加,确保两个滑动窗口完全包含所述故障线路的全部行波数据,将两个所述滑动窗口的行波数据分别送入孪生神经网络模型的两个子网络中输出对应的表征,计算两个表征的欧式距离,得到两个所述滑动窗口行波数据的相似程度,当两个所述滑动窗口的相似程度达到最大时,则此时两个所述滑动窗口相接位置所对应的点即为线路故障点;
S4:分别记录线路两端接收到故障点信号的时间,计算两个接收时间的比值,即为线路故障点分别到故障线路两端的距离比值,确定线路故障点的具体位置。
2.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述时序行波数据为电流行波数据或电压行波数据。
3.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述输电线路组中包含若干条正常线路和一条故障线路,标注的过程是为了每条线路的时序行波数据打上标签,故障线路标记为1,正常线路标记为0。
4.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,所述数据集中训练集与测试集的比例为8:2。
5.根据权利要求1所述的基于行波数据深度学习的输电线路故障选线与定位方法,其特征在于,提取的特征包括行波数据的平均欧式偏离度、平均差分偏离度、最大欧式偏离度、最小欧式偏离度,最大差分偏离度及最小差分偏离度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学;湖南湘能智能电器股份有限公司,未经湖南大学;湖南湘能智能电器股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202210040970.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种纳米光触媒空气除味剂及制备方法
- 下一篇:一种涂料搅拌防尘分散桶
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置





