[发明专利]一种心脏图像分割方法及系统有效

专利信息
申请号: 202210030012.3 申请日: 2022-01-12
公开(公告)号: CN114066913B 公开(公告)日: 2022-04-22
发明(设计)人: 曾安;谢锐伟;潘丹;杨宝瑶;张逸群 申请(专利权)人: 广东工业大学
主分类号: G06T7/11 分类号: G06T7/11;G06V10/44;G06V10/80;G06K9/62;G06N3/04;G06N3/08
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 禹小明
地址: 510062 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 心脏 图像 分割 方法 系统
【权利要求书】:

1.一种心脏图像分割方法,其特征在于,包括以下步骤:

S1:获取不同分辨率的原始心脏图像并进行下采样处理,得到分辨率一致的心脏图像;

S2:训练心脏图像的位置编码矩阵;

S3:将心脏图像的心脏信息与位置编码矩阵进行体素点相加,使每个心脏图像同一个体素信息与位置编码信息对应,得到图像统一的相对位置信息;

S4:利用多层感知器对相对位置信息进行数据处理,获取高维度特征图;

S5:对相对位置信息连续进行多层编码,前一层的编码结果作为下一层的编码输入,得到每层编码结果,并根据最后一层编码结果获取低维度特征图;

S6:将高维度特征图和低维度特征图进行拼接,然后对拼接结果进行初次解码;

S7:构建三维切面多通道融合模型,对每层编码结果分别进行三维切面多通道融合,得到每次编码对应的多通道融合数据;

S8:记初次解码结果为当前层解码结果,最后一次编码对应的多通道融合数据为当前层多通道融合数据;

S9:将当前层解码结果与当前层多通道融合数据进行拼接并进行解码,将解码结果作为当前层解码结果;更新当前层多通道融合数据为前一层编码对应的多通道融合数据;

S10:判断当前层多通道融合数据是否为第一层编码对应的多通道融合数据,若是,则执行步骤S11;否则,执行步骤S9;

S11:对当前层 解码结果进行分割操作,完成心脏图像的分割。

2.根据权利要求1所述的一种心脏图像分割方法,其特征在于,在所述步骤S2中,所述位置编码矩阵是一个与心脏图像大小一致的矩阵,该矩阵训练前为随机参数;通过对位置编码矩阵进行迭代训练,其逐步会统一融合心脏分割区域的特征信息并对参数进行更新,直至符合应用需求,完成对其训练过程;其训练过程具体为:

将用于训练心脏图像集逐个输入位置编码矩阵中,此时图像的每一个体素点对应位置编码矩阵中一个位置信息,该位置信息会随着训练不断的迭代更新,最后将训练心脏图像集中不同图像同一个体素点的位置信息进行融合,形成统一的相对位置信息。

3.根据权利要求1所述的一种心脏图像分割方法,其特征在于,在所述步骤S4中,所述多层感知器采用transformer模块实现,其对相对位置信息先进行步伐为32的卷积操作,然后再进行数据压平、数据转置以及数据随机Dropout操作,从而获取相对位置信息中的高维度特征图。

4.根据权利要求1所述的一种心脏图像分割方法,其特征在于,在所述步骤S5中,每一层编码的过程具体为:先对编码输入数据进行步伐为1的三维卷积,再使用relu激活函数进行激活处理,然后对激活处理结果进行步伐为2的三维卷积,最后再relu激活函数再一次进行激活,完成该层的编码过程,得到对应的编码结果;在所述步骤S6中,解码的过程具体为:先对解码输入数据进行步伐为1的卷积操作,再使用relu激活函数进行激活,然后对激活处理结果进行步伐为2的三维卷积,再使用relu激活函数进行激活,最后进行步伐为2的上卷积操作,完成解码过程。

5.根据权利要求1~4任一项所述的一种心脏图像分割方法,其特征在于,在所述步骤S7中,三维切面多通道融合模型将编码结果根据高度、宽度、深度切分成平面得到多个数据切面;将三维切面多通道融合模型所有通道在高度、宽度、深度的同一个数据切面进行平均池化处理,平均池化后得到高度注意力系数,宽度注意力系数,深度注意力系数;由于三种切面会有交集,当它们处于中间切面时,其对应的注意力系数会偏高,因此将其进行相乘后所得到的结果作为每次编码对应的多通道融合数据,使三维切面多通道融合模型对分割区域更加感兴趣提高分割性能。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210030012.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top