[发明专利]基于通道多分组融合的遥感场景图像分类方法在审
申请号: | 202111502098.7 | 申请日: | 2021-12-09 |
公开(公告)号: | CN114005003A | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 石翠萍;张鑫磊;王丽婧 | 申请(专利权)人: | 齐齐哈尔大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/80;G06V30/19;G06K9/62;G06V20/10 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 张换男 |
地址: | 161006 黑龙江*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 通道 分组 融合 遥感 场景 图像 分类 方法 | ||
1.基于通道多分组融合的遥感场景图像分类方法,其特征在于:所述方法具体过程为:
步骤一、获取高光谱图像;
步骤二、建立基于通道多分组融合的轻量级卷积神经网络模型;
步骤三、将高光谱图像输入建立的基于通道多分组融合的轻量级卷积神经网络模型进行训练,得到训练好的基于通道多分组融合的轻量级卷积神经网络模型;
所述基于通道多分组融合的轻量级卷积神经网络模型包括输入层、第一组、第二组、第三组、第四组、第五组、第六组、第七组、第八组和输出层;
第一组和第二组分别包括分支1、分支2和分支3;
分支1依次包括第一步长为2卷积核大小是3×3的卷积层、批标准化、Rule激活函数、第二步长为1卷积核大小是3×3的卷积层、批标准化、Rule激活函数;
分支2依次包括步长为2池化核大小为2的最大池化层、第三步长为1卷积核大小是3×3的卷积层;
分支3包括第四步长为1卷积核大小是1×1的卷积层;
将分支1和分支2得到的特征进行融合;
将融合之后的特征和分支3得到的特征进行特征融合,得到最终的输出特征;
第三组依次包括第五步长为1卷积核大小是1×1的卷积层、第六步长为1卷积核大小是3×3的卷积层和第一步长为2卷积核大小是3×3的深度可分离卷积层;
第四组至第七组分别包括第七卷积单元、第八卷积单元、第九卷积单元、第十卷积单元、第二深度可分离卷积单元、第三深度可分离卷积单元、第四深度可分离卷积单元、第五深度可分离卷积单元、第六深度可分离卷积单元、第七深度可分离卷积单元、第八深度可分离卷积单元、第九深度可分离卷积单元、第十深度可分离卷积单元;
所述第七卷积单元依次包括第七卷积层、批标准化、Rule激活函数;
所述第八卷积单元依次包括第八卷积层、批标准化、Rule激活函数;
所述第九卷积单元依次包括第九卷积层、批标准化、Rule激活函数;
所述第十卷积单元依次包括第十卷积层、批标准化、Rule激活函数;
所述第二深度可分离卷积单元依次包括第二深度可分离卷积层、批标准化、Rule激活函数;
所述第三深度可分离卷积单元依次包括第三深度可分离卷积层、批标准化、Rule激活函数;
所述第四深度可分离卷积单元依次包括第四深度可分离卷积层、批标准化、Rule激活函数;
所述第五深度可分离卷积单元依次包括第五深度可分离卷积层、批标准化、Rule激活函数;
所述第六深度可分离卷积单元依次包括第六深度可分离卷积层、批标准化、Rule激活函数;
所述第七深度可分离卷积单元依次包括第七深度可分离卷积层、批标准化、Rule激活函数;
所述第八深度可分离卷积单元依次包括第八深度可分离卷积层、批标准化、Rule激活函数;
所述第九深度可分离卷积单元依次包括第九深度可分离卷积层、批标准化、Rule激活函数;
所述第十深度可分离卷积单元依次包括第十深度可分离卷积层、批标准化、Rule激活函数;
将通道数是C的输入特征划分成两个部分,一部分由4个通道数为的特征组成,另一部分由2个通道数为的特征组成;
将通道数是的特征分别输入第七卷积单元、第八卷积单元、第九卷积单元、第十卷积单元进行卷积操作;
将第七卷积单元卷积操作结果和第八卷积单元卷积操作结果进行通道融合,融合后特征通道数是将特征通道数是的特征输入第二深度可分离卷积单元进行卷积操作;
将第八卷积单元卷积操作结果和第九卷积单元卷积操作结果进行通道融合,融合后特征通道数是将特征通道数是的特征输入第三深度可分离卷积单元进行卷积操作;
将第九卷积单元卷积操作结果和第十卷积单元卷积操作结果进行通道融合,融合后特征通道数是将特征通道数是的特征输入第四深度可分离卷积单元进行卷积操作;
将通道数是的特征分别输入第五深度可分离卷积单元和第六深度可分离卷积单元进行卷积操作;
将第二深度可分离卷积单元的卷积操作结果和第三深度可分离卷积单元的卷积操作结果进行通道融合,融合后每个特征的通道数是C,将通道数为C的特征输入第七深度可分离卷积单元进行卷积操作;
将第三深度可分离卷积单元的卷积操作结果和第四深度可分离卷积单元的卷积操作结果进行通道融合,融合后每个特征的通道数是C,将通道数为C的特征输入第八深度可分离卷积单元进行卷积操作;
将第四深度可分离卷积单元的卷积操作结果和第五深度可分离卷积单元的卷积操作结果进行通道融合,融合后每个特征的通道数是C,将通道数为C的特征输入第九深度可分离卷积单元进行卷积操作;
将第五深度可分离卷积单元的卷积操作结果和第六深度可分离卷积单元的卷积操作结果进行通道融合,融合后每个特征的通道数是C,将通道数为C的特征输入第十深度可分离卷积单元进行卷积操作;
将第七深度可分离卷积单元输出结果、第八深度可分离卷积单元输出结果、第九深度可分离卷积单元输出结果、第十深度可分离卷积单元输出结果进行特征融合,特征融合结果和输入特征进行短连接得到输出特征;
第八组依次包括全局平均池化层和SoftMax分类器;
输入层连接第一组,第一组输出连接第二组,第二组输出连接第三组,第三组输出连接第四组,第四组输出连接第五组,第五组输出连接第六组,第六组输出连接第七组,第七组输出连接第八组,第八组连接输出层;
步骤四、将待测高光谱图像输入练好的基于通道多分组融合的轻量级卷积神经网络模型得到分类结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于齐齐哈尔大学,未经齐齐哈尔大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111502098.7/1.html,转载请声明来源钻瓜专利网。