[发明专利]一种基于在线教育平台数据的课程推荐方法在审

专利信息
申请号: 202111433160.1 申请日: 2021-11-29
公开(公告)号: CN114154839A 公开(公告)日: 2022-03-08
发明(设计)人: 杨宗凯;刘智;刘三女牙;粟柱;张格 申请(专利权)人: 华中师范大学
主分类号: G06Q10/06 分类号: G06Q10/06;G06Q30/06;G06Q50/20
代理公司: 武汉天力专利事务所 42208 代理人: 吴晓颖
地址: 430079 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 在线教育 平台 数据 课程 推荐 方法
【说明书】:

发明属于教育信息化领域,提供一种基于在线教育平台数据的课程推荐方法,利用embedding技术以及图神经网络模型,基于学生基础信息以及学生在学习过程中产生的历史数据,考虑了不同学生之间的交互数据的影响,全面发挥数据的价值,利用前沿的图神经网络GNN算法模型,深度挖掘了学生与学生之间的关系,同时也考虑了课程与课程之间的相似度、学生与课程的历史交互数据,从而实现更加可靠的推荐方式。

技术领域

本发明属于教育信息化领域,具体涉及一种基于在线教育平台数据的课程推荐方法,涉及学生基础属性以及学生社交关系的在线课程推荐方法。

背景技术

随着信息技术的飞速发展,信息资源以几何增长的形式存储在互联网平台,人们需要花费越来越多的时间来查找自己所需要的信息资源。近些年来,推荐算法在越来越多的平台开始使用,比如在电影推荐、书籍推荐等方面取得了不错的成效,为人们的日常生活节约了宝贵的时间。在互联网在线教育平台,无数的学子们在使用过程中产生了大量的学习行为数据,利用这些历史行为数据,可以对学生进行个性化课程推荐,使学生更加快速的获取自己想要的课程,从而达到更好的学习效果。

自从2013年在人工智能领域研究人员正式提出了词向量技术,即embedding技术。在此之后embedding技术在人工智能各个领域迅速推广,如自然语言处理领域以及智能推荐算法领域。现今在推荐算法领域,越来越多的人将各种不同的物品转换成向量,通过embedding技术,数字向量可以代表一种事物,这是一种数字化的表达方式,如此,推荐算法在计算事物之间的相似度更加准确。在图神经网络中,将物品或者人构造节点,通过人与人、人与物之间的关系,构造出图神经网络中节点与节点之间形成的边的关系。图神经网络使得人与人、人与物品之间形成了一个整体,不再是彼此之间相互独立的关系,通过图神经网络得到的向量在代表人或事物的时候更加准确有效。

发明内容

本发明的目的就是为了克服现有技术中的不足之处,利用embedding技术以及图神经网络模型,提供一种基于在线教育平台数据的课程推荐方法,该方法以学生为中心,考虑了不同学生之间的交互数据的影响,全面发挥数据的价值,利用前沿的图神经网络GNN算法模型,深度挖掘了学生与学生之间的关系,同时也考虑了课程与课程之间的相似度、学生与课程的历史交互数据,从而实现更加可靠的推荐方式。

本发明的目的是通过如下技术措施来实现的。

一种基于在线教育平台数据的课程推荐方法,该课程推荐方法是基于学生基础信息以及学生在学习过程中产生的历史数据,包括以下步骤:

(1)从在线教育平台数据库中获取学生与课程的相关数据D0;

(2)从数据D0中得到学生的相关数据,包括基础信息数据D1、学生与课程之间的历史交互数据D2、学生与学生之间的历史交互数据D3;

(3)根据基础信息数据D1建立学生基础属性数据矩阵X;

(4)根据学生与课程之间的历史交互数据D2建立学生参加过的课程序列,获取每一门课程的向量表达方式,即course_embedding_dict,其数据样式为{“course id”:“course embedding”};

(5)再次根据学生与课程之间的历史交互数据D2获取每一个学生对参加过的课程的评分,并建立一个评分矩阵R,其数据样式为{“student id”,“course id”,“coursegrade”};

(6)根据学生与学生之间的历史交互数据D3,建立学生与学生之间的邻接矩阵A,矩阵A存储的值为0或1,0代表学生之间产生的交互,1代表学生之间并未产生交互;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中师范大学,未经华中师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111433160.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top