[发明专利]一种基于在线教育平台数据的课程推荐方法在审
申请号: | 202111433160.1 | 申请日: | 2021-11-29 |
公开(公告)号: | CN114154839A | 公开(公告)日: | 2022-03-08 |
发明(设计)人: | 杨宗凯;刘智;刘三女牙;粟柱;张格 | 申请(专利权)人: | 华中师范大学 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06Q30/06;G06Q50/20 |
代理公司: | 武汉天力专利事务所 42208 | 代理人: | 吴晓颖 |
地址: | 430079 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 在线教育 平台 数据 课程 推荐 方法 | ||
本发明属于教育信息化领域,提供一种基于在线教育平台数据的课程推荐方法,利用embedding技术以及图神经网络模型,基于学生基础信息以及学生在学习过程中产生的历史数据,考虑了不同学生之间的交互数据的影响,全面发挥数据的价值,利用前沿的图神经网络GNN算法模型,深度挖掘了学生与学生之间的关系,同时也考虑了课程与课程之间的相似度、学生与课程的历史交互数据,从而实现更加可靠的推荐方式。
技术领域
本发明属于教育信息化领域,具体涉及一种基于在线教育平台数据的课程推荐方法,涉及学生基础属性以及学生社交关系的在线课程推荐方法。
背景技术
随着信息技术的飞速发展,信息资源以几何增长的形式存储在互联网平台,人们需要花费越来越多的时间来查找自己所需要的信息资源。近些年来,推荐算法在越来越多的平台开始使用,比如在电影推荐、书籍推荐等方面取得了不错的成效,为人们的日常生活节约了宝贵的时间。在互联网在线教育平台,无数的学子们在使用过程中产生了大量的学习行为数据,利用这些历史行为数据,可以对学生进行个性化课程推荐,使学生更加快速的获取自己想要的课程,从而达到更好的学习效果。
自从2013年在人工智能领域研究人员正式提出了词向量技术,即embedding技术。在此之后embedding技术在人工智能各个领域迅速推广,如自然语言处理领域以及智能推荐算法领域。现今在推荐算法领域,越来越多的人将各种不同的物品转换成向量,通过embedding技术,数字向量可以代表一种事物,这是一种数字化的表达方式,如此,推荐算法在计算事物之间的相似度更加准确。在图神经网络中,将物品或者人构造节点,通过人与人、人与物之间的关系,构造出图神经网络中节点与节点之间形成的边的关系。图神经网络使得人与人、人与物品之间形成了一个整体,不再是彼此之间相互独立的关系,通过图神经网络得到的向量在代表人或事物的时候更加准确有效。
发明内容
本发明的目的就是为了克服现有技术中的不足之处,利用embedding技术以及图神经网络模型,提供一种基于在线教育平台数据的课程推荐方法,该方法以学生为中心,考虑了不同学生之间的交互数据的影响,全面发挥数据的价值,利用前沿的图神经网络GNN算法模型,深度挖掘了学生与学生之间的关系,同时也考虑了课程与课程之间的相似度、学生与课程的历史交互数据,从而实现更加可靠的推荐方式。
本发明的目的是通过如下技术措施来实现的。
一种基于在线教育平台数据的课程推荐方法,该课程推荐方法是基于学生基础信息以及学生在学习过程中产生的历史数据,包括以下步骤:
(1)从在线教育平台数据库中获取学生与课程的相关数据D0;
(2)从数据D0中得到学生的相关数据,包括基础信息数据D1、学生与课程之间的历史交互数据D2、学生与学生之间的历史交互数据D3;
(3)根据基础信息数据D1建立学生基础属性数据矩阵X;
(4)根据学生与课程之间的历史交互数据D2建立学生参加过的课程序列,获取每一门课程的向量表达方式,即course_embedding_dict,其数据样式为{“course id”:“course embedding”};
(5)再次根据学生与课程之间的历史交互数据D2获取每一个学生对参加过的课程的评分,并建立一个评分矩阵R,其数据样式为{“student id”,“course id”,“coursegrade”};
(6)根据学生与学生之间的历史交互数据D3,建立学生与学生之间的邻接矩阵A,矩阵A存储的值为0或1,0代表学生之间产生的交互,1代表学生之间并未产生交互;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中师范大学,未经华中师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111433160.1/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置