[发明专利]视频文本的相似性度量方法及系统在审

专利信息
申请号: 202111214110.4 申请日: 2021-10-19
公开(公告)号: CN114092703A 公开(公告)日: 2022-02-25
发明(设计)人: 张化祥;金明;刘丽;朱磊;孙建德;聂礼强;金圣开 申请(专利权)人: 山东师范大学
主分类号: G06V10/40 分类号: G06V10/40;G06V10/74;G06V10/774;G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 李圣梅
地址: 250014 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 视频 文本 相似性 度量 方法 系统
【权利要求书】:

1.视频文本的相似性度量方法,其特征是,包括:

使用预训练的特征提取器提取视频的多模态特征,得到初始视频特征表示;

将初始特征输入到粗-细粒度并列注意力网络中,得到中间表示特征;

将中间特征表示输入到特征融合网络得到最终的视频多模态特征表示;

利用预先训练的模型对输入文本进行文本特征提取,得到文本特征表示;

通过门嵌入生成对应视频不同模态特征的文本特征表示向量;

对视频多模态特征表示以及文本特征表示进行相似性度量。

2.如权利要求1所述的视频文本的相似性度量方法,其特征是,视频的不同模态初始特征提取的过程为:

使用不同的网络提取视频的多种模态特征,得到视频中不同模态的初始特征表示;

将视频中不同模态特征对齐,将特征提取时的时间信息融入到不同的特征中;

将不同模态的初始特征表示和时间特征进行嵌入;

利用粗细粒度并列注意力网络从局部区域特征和全局区域特征对嵌入后的特征进行处理。

3.如权利要求2所述的视频文本的相似性度量方法,其特征是,所述粗细粒度并列注意力网络中粗粒度注意网络处理的过程为:

通过区域池化策略将每个视频的不同模态特征进行划分;

将划分后的每个部分特征输入卷积层,通过区域注意力机制实现每个部分区域之间的联系;

通过对计算出的部分特征相似矩阵与嵌入的部分特征进行内积计算,得到部分特征增强矩阵;

通过部分增强特征的加权组合,得到了聚合特征。

4.如权利要求2所述的视频文本的相似性度量方法,其特征是,所述粗细粒度并列注意力网络中细粒度注意力网络处理过程为:

将每个视频模态的初始特征转换为全局特征图;

计算图中特征点之间的联系得到完整的连接图;

根据图的注意机制,计算注意系数,获得节点特征;

对节点特征进行了批量归一化,获得细粒度注意网络生成的特征。

5.如权利要求1所述的视频文本的相似性度量方法,其特征是,所述相似性度量具体为:通过计算多层相似度来评估视频和文本的相似性,然后进行多层相似度的加权求和。

6.如权利要求1所述的视频文本的相似性度量方法,其特征是,特征融合网络将视频中不同模态特征进行融合,最终得到视频表示,减少视频中不同模态之间的语义差异。

7.如权利要求1所述的视频文本的相似性度量方法,其特征是,文本特征提取时使用预先训练好的BERT模型,然后连接最大池化操作和全连接层,最终输出文本特征表示。

8.视频文本的相似性度量系统,其特征是,包括:

视频初始特征提取模块,被配置为:使用预训练的特征提取器提取视频的多模态特征,得到初始视频特征表示;

时间嵌入模块,被配置为:将每个特征提取器提取特征的时间与视频不同模态的特征进行嵌入,增强视频特征之间的对齐程度;

粗-细粒度并列注意力模块,被配置为:将初始特征输入到粗-细粒度并列注意力网络中,得到中间表示特征;

特征融合模块,被配置为:将中间特征表示输入到特征融合网络得到最终的视频多模态特征表示;

文本特征提取模块,被配置为:利用预先训练的模型对输入文本进行文本特征提取,得到文本特征表示;

通过门嵌入生成对应视频不同模态特征的文本特征表示向量;

多层相似性度量模块,被配置为:对视频多模态特征表示以及文本特征表示进行相似性度量。

9.一种计算装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征是,所述处理器执行所述程序时实现上述权利要求1-7任一所述的方法的步骤。

10.一种计算机可读存储介质,其上存储有计算机程序,其特征是,该程序被处理器执行时执行上述权利要求1-7任一所述的方法的步骤。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东师范大学,未经山东师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111214110.4/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top