[发明专利]一种基于显著性的动态目标检测与识别的方法及装置在审
申请号: | 202111190520.X | 申请日: | 2021-10-13 |
公开(公告)号: | CN113901929A | 公开(公告)日: | 2022-01-07 |
发明(设计)人: | 郝肖冉;井世丽;曹璨;陈延真;吴盼良 | 申请(专利权)人: | 河北汉光重工有限责任公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06T5/00;G06T7/11;G06T7/12;G06T7/13;G06N20/10 |
代理公司: | 北京理工大学专利中心 11120 | 代理人: | 温子云;李爱英 |
地址: | 056002 河北*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 显著 动态 目标 检测 识别 方法 装置 | ||
本发明提供一种基于显著性的动态目标检测与识别方法及装置,所述方法包括获取目标对象及视频;提取所述背景区内所有像素位置的特征向量,对提取到的全部特征向量进行聚类;整合每个聚类类别对应的距离图,得到初步显著图;基于超像素级保留边缘的高斯模糊对所述初步显著图进行优化增强;从优化增强后的显著图中对目标区域进行特征分割,得到在所述第一帧图像中的目标图像;将分割得到的目标图像轮廓输入基于机器学习的支持向量机,进行目标对象的识别。该方法具有识别精度高、运行速度快、计算成本小的技术效果。
技术领域
本发明属于计算机视觉领域,尤其涉及一种基于显著性的动态目标检测与识别的方法及装置。
背景技术
检测与识别是计算机视觉领域最基本的问题之一,应用领域广。通常情况下,视觉传感器(可见光相机、红外相机、雷达等)获取图像后,目标检测与识别算法可在图像中找到需要的目标,获取其在图像中的对应位置和像素范围,同时给出目标类别。目标检测与识别是高级图像处理任务的基础,如图像分割,目标跟踪,事件判断等。
目前目标检测与识别算法大致可分为两种流派:基于传统方法的检测与识别算法以及基于深度学习的检测与识别算法。
基于传统方法的检测与识别算法的核心思想在于图像特征识别:首先对图像使用一一枚举的方式来判断选择对象可能的区域范围,再使用图像识别方法来提取这些可能区域范围的特征并进行分类,最后通过非极大值抑制(NMS)输出检测与识别结果。常见的方法有背景减除法、帧间差分法和光流法等。背景减除法提前建立一个没有目标对象的背景模板,将每一帧图片与背景模板相减,即可分割出背景和目标,从而检测出所需目标。该算法仅适用于运动场景固定且背景简单的场合,不具有适用性。帧间差分法则是选取相邻帧进行对比,选择直方图、亮度等合适的特征参数进行减法运算,从而获得目标对象的位置。该方式允许运动场景改变和多目标检测识别,但鲁棒性较差。光流法通过检测图像像素点的强度随时间的变化情况来推断目标物体的移动速度及移动方向,对目标检测与识别有较高的识别精度,但计算量过大、时间复杂度较高。
基于深度学习的检测与识别算法的核心思想是通过算法对图像进行处理,生成一系列的候选区域,将候选区域作为样本,提取每个候选区域的图片特征通过卷积神经网络(CNN)对样本进行分类。此类较为常见的检测与识别算法按照出现的时间顺序,分别有:R-CNN算法、Fast R-CNN算法、以及Faster R-CNN算法等。2014年,提出了R-CNN算法,作为第一个将深度学习应用在目标检测上的算法,首次提出在目标检测时先进行候选区域的提取,通过选择性搜索方法提取一系列候选框,然后每个候选区域被重新调整为一个特定大小的图像,提取完成之后再对每个候选区域提取各自显著的特征,多次进行,也就是“卷积-池化-卷积-池化”,最后再进行分类及后续处理。2015年,Fast R-CNN算法首次提出了端到端的处理模式,且运行速度较前一算法有了较大的提升。同样是2015年,Faster R-CNN算法出现,至今仍然是精确度最高的算法之一。相比于前人算法,其优势在于利用一个RPN网络取代之前的选择性搜索算法,以此减少候选区域的数量,提高了处理速度。基于深度学习的检测与识别算法精度较高,但前期需要大量的计算样本,且解算速度慢,无法实时检测与识别。
综合以上内容,基于传统方法的检测与识别算法精度差,不适用于动态目标。基于深度学习的检测与识别算法所需计算量大,耗时长,不具有普适性。
发明内容
为解决上述技术问题,本发明提出了一种基于显著性的动态目标检测与识别的方法,用于解决现有技术的目标检测方法检测与识别算法精度差,不适用于动态目标,算量大,耗时长,不具有普适性的技术问题。
根据本发明的第一方面,提供一种基于显著性的动态目标检测与识别的方法,所述方法包括以下步骤:
步骤S101:获取目标对象及视频,若所述目标对象未出现在所述第一帧图像中,将所述第一帧图像整体作为背景区;若所述目标对象出现在所述第一帧图像中,将除所述目标对象以外的边界区域作为背景区;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北汉光重工有限责任公司,未经河北汉光重工有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111190520.X/2.html,转载请声明来源钻瓜专利网。