[发明专利]图像感测装置及图像处理装置在审

专利信息
申请号: 202111074052.X 申请日: 2021-09-14
公开(公告)号: CN114630010A 公开(公告)日: 2022-06-14
发明(设计)人: 金童翼 申请(专利权)人: 爱思开海力士有限公司
主分类号: H04N5/217 分类号: H04N5/217;H04N5/225;H04N5/232;H04N5/357
代理公司: 北京三友知识产权代理有限公司 11127 代理人: 张美芹;刘久亮
地址: 韩国*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 装置 处理
【说明书】:

本公开提供图像感测装置及图像处理装置。所述图像感测装置包括:采样模块,所述采样模块适于基于单帧时间内生成的单个图像,针对每种颜色生成具有不同曝光时间的多个图像;校正模块,所述校正模块适于使用一套学习算法,基于所述多个图像学习所述单个图像的校正参数,并通过从所述多个图像去除所述校正参数生成多个校正图像;以及图像处理模块,所述图像处理模块适于基于所述多个校正图像生成对应于所述单个图像的高动态范围图像。

技术领域

本公开的各种实施方式涉及一种半导体设计技术,更具体地说涉及一种图像感测装置。

背景技术

图像感测装置是利用半导体对光发生反应的特性来捕获图像的装置。图像感测装置通常分类为电荷耦合装置(CCD)图像感测装置和互补金属氧化物半导体(CMOS)图像感测装置。近来,CMOS图像感测装置被广泛使用,因为CMOS图像感测装置可以允许在单个集成电路(IC)上直接实施模拟和数字控制电路两者。

发明内容

本公开的各种实施方式涉及一种可以基于深度学习生成高动态范围图像的图像感测装置。

根据本公开的实施方式,一种图像感测装置可以包括:采样模块,所述采样模块适于基于单帧时间内生成的单个图像,针对每种颜色生成具有不同曝光时间的多个图像;校正模块,所述校正模块适于使用一套学习算法,基于所述多个图像学习所述单个图像的校正参数,并通过从所述多个图像去除所述校正参数生成多个校正图像;以及图像处理模块,所述图像处理模块适于基于所述多个校正图像生成对应于所述单个图像的高动态范围图像。

所述校正参数可以包括噪声成分和重影成分。

所述校正模块可以包括:去噪声模块,所述去噪声模块适于使用第一学习算法基于所述多个图像学习所述多个图像中的每一者的噪声成分,并通过从所述多个图像中的每一者去除所述噪声成分而生成多个去噪声图像;计算模块,所述计算模块适于基于所述多个去噪声图像和每种颜色的权重生成多个灰度图像;以及去重影模块,所述去重影模块适于使用第二学习算法,基于所述多个灰度图像学习所述多个灰度图像中的每一者的重影成分,并通过从所述多个灰度图像中的每一者去除所述重影成分生成所述多个校正图像。

根据本公开的实施方式,一种图像感测装置可以包括:图像传感器,所述图像传感器包括像素阵列,所述像素阵列具有以四边形图案排列并根据每个图案的不同曝光时间进行控制的颜色过滤器,并且适于在单帧时间内生成对应于所述四边形图案的单个图像;以及图像处理器,所述图像处理器适于基于所述单个图像以及一套学习算法针对每种颜色学习校正参数,并基于所述校正参数生成具有Bayer图案的高动态范围图像。

所述校正参数可以包括噪声成分和重影成分。

所述单个图像可以具有四边形图案,并且所述高动态范围图像可以具有Bayer图案。

根据本公开的实施方式,一种图像处理装置可以包括:采样模块,所述采样模块适于接收四边形图案图像,并根据颜色通道对所述四边形图案图像进行采样以生成多个通道图像;去噪声模块,所述去噪声模块适于生成多个去噪通道图像,每个去噪声通道图像均通过使用本身的和另一个通道的一对图像进行学习而生成,所述另一个通道与相对较高的曝光时间相关联;去重影模块,所述去重影模块适于生成多个去重影通道图像,每个去重影通道图像均通过使用本身的和另一个选择通道的一对图像进行学习而生成,所述另一个选择通道与最低曝光时间相关联;以及图像处理模块,所述图像处理模块适于基于所述多个去重影通道图像生成具有Bayer图案的输出图像。

附图说明

图1是示出根据本公开的实施方式的图像感测装置的框图。

图2是示出包括在图1中所示的图像传感器中的像素阵列的实施例的图。

图3是示出图1中所示的图像处理器的框图。

图4是示出图3中所示的采样模块的框图。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于爱思开海力士有限公司,未经爱思开海力士有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202111074052.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top