[发明专利]人脸识别模型的训练方法、装置及计算机程序产品在审
| 申请号: | 202110940012.2 | 申请日: | 2021-08-13 |
| 公开(公告)号: | CN113657269A | 公开(公告)日: | 2021-11-16 |
| 发明(设计)人: | 李弼;彭楠;希滕;张刚 | 申请(专利权)人: | 北京百度网讯科技有限公司 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
| 代理公司: | 北京英赛嘉华知识产权代理有限责任公司 11204 | 代理人: | 王达佐;马晓亚 |
| 地址: | 100085 北京市*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 识别 模型 训练 方法 装置 计算机 程序 产品 | ||
本公开提供了人脸识别模型的训练方法、装置、电子设备、存储介质及计算机程序产品,涉及人工智能领域,具体涉及计算机视觉和深度学习技术,可用于人脸识别场景下。具体实现方案为:获取训练样本集,其中,训练样本集中的训练样本包括样本人脸图像和类别标签;利用机器学习方法,以样本人脸图像为输入,以所输入的样本人脸图像对应的类别标签为初始人脸识别模型中的两个目标全连接层的期望输出,训练得到人脸识别模型,其中,两个目标全连接层依次对包括遮挡物的样本人脸图像、不包括遮挡物的样本人脸图像建模。本公开提高了人脸识别模型的识别精度。
技术领域
本公开涉及人工智能领域,具体涉及计算机视觉和深度学习技术,尤其涉及人脸识别模型的训练方法、装置、电子设备、存储介质以及计算机程序产品,可用于人脸识别场景下。
背景技术
近年来,随着深度学习技术的发展,基于深度学习技术的人脸识别的精度大幅提升。人脸识别在很多场景下有重要应用,如机场、火车站等换乘场景下的人证比对,私域管理场景下的门禁刷脸,金融场景下的真人核验等。而在人脸识别模型的应用过程中,训练过程和应用过程的不匹配,损害了人脸识别模型的识别精度。
发明内容
本公开提供了一种人脸识别模型的训练方法、装置、电子设备、存储介质以及计算机程序产品。
根据第一方面,提供了一种人脸识别模型的训练方法,包括:获取训练样本集,其中,训练样本集中的训练样本包括样本人脸图像和类别标签;利用机器学习方法,以样本人脸图像为输入,以所输入的样本人脸图像对应的类别标签为初始人脸识别模型中的两个目标全连接层的期望输出,训练得到人脸识别模型,其中,两个目标全连接层依次对包括遮挡物的样本人脸图像、不包括遮挡物的样本人脸图像建模。
根据第二方面,提供了一种人脸识别方法,包括:获取待识别图像;通过预训练的人脸识别模型识别待识别图像,得到人脸识别结果,其中,人脸识别模型通过第一方面任一实现方式训练得到。
根据第三方面,提供了一种人脸识别模型的训练装置,包括:第一获取单元,被配置成获取训练样本集,其中,训练样本集中的训练样本包括样本人脸图像和类别标签;训练单元,被配置成利用机器学习方法,以样本人脸图像为输入,以所输入的样本人脸图像对应的类别标签为初始人脸识别模型中的两个目标全连接层的期望输出,训练得到人脸识别模型,其中,两个目标全连接层依次对包括遮挡物的样本人脸图像、不包括遮挡物的样本人脸图像建模。
根据第四方面,提供了一种人脸识别装置,包括:第二获取单元,被配置成获取待识别图像;识别单元,被配置成通过预训练的人脸识别模型识别待识别图像,得到人脸识别结果,其中,人脸识别模型通过第一方面任一实现方式训练得到。
根据第五方面,提供了一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如第一方面、第二方面任一实现方式描述的方法。
根据第六方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,计算机指令用于使计算机执行如第一方面、第二方面任一实现方式描述的方法。
根据第七方面,提供了一种计算机程序产品,包括:计算机程序,计算机程序在被处理器执行时实现如第一方面、第二方面任一实现方式描述的方法。
根据本公开的技术,在人脸识别模型的训练过程中,通过两个目标全连接层对包括遮挡物的人脸图像和不包括遮挡物的人脸图像进行分离建模,与人脸识别模型的应用场景更加贴近,提高了人脸识别模型的识别精度。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本公开的限定。其中:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京百度网讯科技有限公司,未经北京百度网讯科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110940012.2/2.html,转载请声明来源钻瓜专利网。





