[发明专利]一种多模态对齐校准的RGB-D图像显著目标检测方法在审

专利信息
申请号: 202110939965.7 申请日: 2021-08-13
公开(公告)号: CN113658134A 公开(公告)日: 2021-11-16
发明(设计)人: 刘政怡;檀亚诚;朱斌;张子森;姚晟;李炜 申请(专利权)人: 安徽大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/33;G06T5/50;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 230601 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 多模态 对齐 校准 rgb 图像 显著 目标 检测 方法
【权利要求书】:

1.本发明一种多模态对齐校准的RGB-D图像显著目标检测方法,其特征在于,所述方法包括以下步骤:

S1、从RGB-D图像中提取RGB特征和Depth特征;

S2、对RGB特征和Depth特征进行对齐校准,产生RGB修正特征和Depth修正特征;

S3、从Depth特征中提取边特征,产生边图;

S4、联合解码RGB修正特征、Depth修正特征、边特征产生显著图;

S5、利用显著图真值、边图真值监督所述边图、显著图,通过训练集的训练,形成RGB-D图像显著目标检测模型;

S6、利用所述RGB-D图像显著目标检测模型检测任意一张RGB-D图像,经过步骤S1-S4,输出显著图为检测结果。

2.根据权利要求1所述的一种多模态对齐校准的RGB-D图像显著目标检测方法,其特征在于,在所述步骤S1中,提取RGB特征和Depth特征的方法是分别使用两个在ImageNet上预训练的Swin Transformer神经网络模型提取RGB特征及Depth特征其中i表示层数,对应于Swin Transformer的层数,i取值为1至4的自然数。

3.根据权利要求1所述的一种多模态对齐校准的RGB-D图像显著目标检测方法,其特征在于,在所述步骤S2中,对RGB特征和Depth特征进行对齐校准,产生RGB修正特征和Depth修正特征,具体操作如下:

S2.1:将RGB特征和Depth特征进行逐元素相乘,再经过一个空间注意力操作,形成空间注意力权重,分别与RGB特征和Depth特征逐元素相乘,实现RGB特征和Depth特征的对齐,产生RGB对齐特征和Depth对齐特征,具体描述为:

所述表示第i层的RGB对齐特征和Depth对齐特征,SA(·)操作是指论文《BBS-Net:RGB-D salient object detection with a bifurcated backbone strategynetwork》中所提出的空间注意力模块,“×”是指逐元素相乘操作;

S2.2:将所述RGB对齐特征和Depth对齐特征进行通道注意力操作,形成通道注意力权重,分别与RGB特征和Depth特征逐元素相乘,形成RGB修正特征和Depth修正特征,具体描述为:

所述表示第i层的RGB修正特征和Depth修正特征,CA(·)操作是指论文《BBS-Net:RGB-D salient object detection with a bifurcated backbone strategynetwork》中所提出的通道注意力模块,“×”是指逐元素相乘操作。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110939965.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top