[发明专利]基于深度神经网络的以太坊钓鱼诈骗账户检测方法与装置有效
申请号: | 202110905722.1 | 申请日: | 2021-08-09 |
公开(公告)号: | CN113344562B | 公开(公告)日: | 2021-11-02 |
发明(设计)人: | 王海舟;文廷科;肖元星;韩莉君;王安琪 | 申请(专利权)人: | 四川大学 |
主分类号: | G06Q20/06 | 分类号: | G06Q20/06;G06Q20/38;G06Q20/40;G06N3/04;G06N3/08 |
代理公司: | 成都禾创知家知识产权代理有限公司 51284 | 代理人: | 刘凯 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 神经网络 以太 钓鱼 诈骗 账户 检测 方法 装置 | ||
本发明公开了一种基于深度神经网络的以太坊钓鱼诈骗账户检测方法与装置,首先有目标性地采集了权威网站Etherscan上的钓鱼诈骗账户列表用以标注账户类别,然后基于这些钓鱼诈骗账户构建了以太坊钓鱼诈骗子网络,并从中整理得到数据集ETHScam;ETHScam针对以太坊账户以及账户所参与的所有交易记录提取了15个特征,包括账户状态特征、账户交易网络特征和账户交易序列特征三个类别;最终,提出一个以太坊钓鱼诈骗账户检测模型MFL。该模型使用FCN和LSTM来提取账户交易序列特征的数值特征向量和时序特征向量,并结合BP神经网络学习账户状态特征和账户交易网络特征得到账户的统计特征向量,实现了对账户的分类。
技术领域
本发明涉及网络安全技术领域,具体为一种基于深度神经网络的以太坊钓鱼诈骗账户检测方法与装置。
背景技术
区块链技术是以比特币、以太坊为代表的众多加密货币方案的底层核心技术,最初设计目的是解决电子支付中过度依赖可信第三方的问题。区块链组合使用P2P网络、分布式计算等成熟技术,并结合哈希函数、非对称密码、数字签名和零知识证明等密码学技术,成为一种全新的分布式基础架构和计算范式。区块链技术极具应用潜力,其应用范围已从最初的加密货币延伸至金融、物联网、智能制造等多个领域,引起了工业界、学术界和国家层面的广泛关注。世界经济论坛对区块链在金融场景下的应用进行了预测分析,认为区块链将在跨境支付、保险、贷款等多方面重塑金融市场基础设施。
随着理论研究的深入,区块链在不断持续展现出蓬勃生命力的同时,其自身的安全问题逐渐显露。针对加密货币应用的安全威胁以及针对区块链平台的各种犯罪行为呈现高发态势。在交易平台被盗事件频发、智能合约漏洞凸显、利用匿名交易实施犯罪等威胁之外,借助区块链加密货币实施的钓鱼诈骗犯罪行为尤其猖獗,引发公众对区块链安全性的质疑和对其发展前景的担忧,严重影响加密货币的价值存储功能。因此,目前迫切需要一种新的方法来更加高效而精确地识别出实施钓鱼诈骗犯罪行为的账户,从而打击区块链经济犯罪行为、保护用户的资产。
以太坊作为下一代加密货币与去中心化应用平台,是区块链技术一次重大革新与发展。它支持通过创建智能合约发布分布式应用程序,具有成为去中心化世界虚拟机的潜质。支撑以太坊运行的以太币目前是市值排名第二的加密货币,价值超过3000亿美元。在价值居高的同时,以太坊上的网络钓鱼诈骗活动也日益猖獗。报告指出,仅在2018年,研究机构就发现以太坊上有超过2000个钓鱼诈骗账户,这些钓鱼诈骗账户从近4万人手中骗取了价值超过3600万美元的加密货币。目前,已经有一些研究者提出了对以太坊钓鱼诈骗账户的检测方法,但是还存在准确率不高的问题。因此,本发明针对这样的问题,提出了一种基于深度神经网络的简单高效的以太坊钓鱼诈骗账户检测方法。
发明内容
针对上述问题,本发明的目的在于提供一种基于深度神经网络的以太坊钓鱼诈骗账户检测方法与装置,深度学习能自主学习到数据中的有效特征,检测结果能够明显优于传统的机器学习模型,且能够对交易进行特征分析提取进而提取钓鱼账户本身的生命周期特点,从而更为有效地鉴别钓鱼诈骗账户,检测的准确率更高。
本发明技术方案如下:一种基于深度神经网络的以太坊钓鱼诈骗账户检测方法,包括以下步骤:
步骤1:通过网络爬虫和以太坊节点,获取账户的地址、标记和交易的相关字段,构建以太坊钓鱼诈骗二阶子网络;从中分析并提取出以太坊钓鱼诈骗的账户交易序列特征、账户状态特征和账户交易网络特征,构建以太坊钓鱼诈骗账户数据集ETHScam;
步骤2:构建一个基于FCN-LSTM网络和BP神经网络的深度学习模型,模型命名为MFL,根据输入的以太坊钓鱼诈骗账户数据集ETHScam进行特征提取:将账户交易序列特征投入FCN(fully convolutional network,全卷积神经网络)和LSTM(long short termmemory network,长短期记忆神经网络)并置的网络中提取出交易的数值特征向量和时序特征向量,将账户状态特征和账户交易网络特征投入BP神经网络学习得到统计特征向量;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110905722.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种盾构机及其换刀装置
- 下一篇:一种秸秆粉碎箱