[发明专利]基于时空卷积网络的机动车尾气遥测数据的多重补全方法有效
申请号: | 202110694200.1 | 申请日: | 2021-06-22 |
公开(公告)号: | CN113408629B | 公开(公告)日: | 2022-09-06 |
发明(设计)人: | 凌强;费习宏;李峰 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | G06V10/72 | 分类号: | G06V10/72;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京科迪生专利代理有限责任公司 11251 | 代理人: | 金怡 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 时空 卷积 网络 机动车 尾气 遥测 数据 多重 方法 | ||
本发明涉及一种基于时空卷积网络的机动车尾气遥测数据的多重补全方法及系统,其中方法包括:步骤S1:获取检测区域路网遥测点拓扑结构信息和路网中遥测设备遥测的机动车尾气排放浓度多重缺失数据,并进行处理,分别构建空间路网的拓扑结构图数据和机动车尾气排放浓度时间序列数据;步骤S2:将空间路网的拓扑结构图数据和机动车尾气排放浓度时间序列数据输入到时空图卷积网络进行补全计算,得到最终补全的机动车尾气排放浓度时间序列数据。本发明通过获取检测区域路网遥测点拓扑结构信息,来实现对路网中遥测设备遥测的机动车尾气排放浓度多重缺失数据进行补全。
技术领域
本发明属于数据处理领域,特别涉及了一种基于时空卷积网络的机动车尾气遥测数据的多重补全方法及系统。
背景技术
随着城市机动车保有量增加,造成机动车尾气排放量的激增,即城市尾气排放所造成的自然和环境问题也日益严重,进而带来一个重大的社会问题,因此机动车排气污染监控工作面临着严峻的风险。机动车尾气排放产生的温室气体,是城市空气污染的主要源头,同时会对人体健康造成一定危害。尤其是老旧的排放未达标和机动车问题造成的尾气排放超标的机动车会产生大量对大气环境有害的气体,有必要进行对超标尾气排放有效的监管。
虽然国内遥测技术已经开始普及,但是考虑到遥测设备的复杂性、现场环境干扰,容易造成采集到的机动车尾气排放数据缺失,而缺失的数据会造成我们后续分析尾气排放等问题带来源头上的失真。现有的数据值数据补全,大多采用均值、众数或者中位数方法,或者采用回归方式对单个缺失数据进行补全,这些方法只是粗略的对缺失值部分进行了填充或者只是的单个数据的补全,无法给多重的缺失数据集进行有效填充。同时检测区域各个遥测点之间存在着地理联系和遥测数据的时间依赖性,没有考虑这些因素来补全数据会造成巨大的补全误差。因此,现有尾气排放浓度缺失数据补全的方法不能有效的进行对尾气排放缺失数据进行补全。
发明内容
为了解决上述技术问题,克服现有技术的不足。本发明提供一种基于时空卷积网络的机动车尾气遥测数据的多重补全方法及系统。基于检测区域的各个遥测设备点之间存在空间依赖性和时间依赖性,本发明引入了路网空间拓扑结构信息和尾气排放数据时间段内的周期时间段内的尾气排放数据对缺失数据浓度的影响,使得本发明能够获得对机动车尾气排放浓度缺失数据集更好的补全效果。
本发明技术解决方案为:一种基于时空卷积网络的机动车尾气遥测数据的多重补全方法,包括:
步骤S1:获取检测区域路网遥测点拓扑结构信息和路网中遥测设备遥测的机动车尾气排放浓度多重缺失数据,并进行处理,分别构建空间路网的拓扑结构图数据和机动车尾气排放浓度时间序列数据;
步骤S2:将所述空间路网的拓扑结构图数据和机动车尾气排放浓度时间序列数据输入到时空图卷积网络进行补全,所述的时空图卷积网络包括自注意力机制时空图卷积网络和改进型最近邻算法,所述的空间路网的拓扑结构图数据输入到所述自注意力机制时空图卷积网络得到路网的时空特征结果,所述的时空特征结果用于改进型最近邻算法中对机动车尾气排放浓度时间序列缺失数据进行多重缺失数据补全,得到最终完整的机动车尾气排放浓度时间序列数据。
本发明与现有技术相比,具有以下优点:
1、本发明提供的基于时空卷积网络的机动车尾气遥测数据的多重补全方法及系统是基于检测区域遥测设备拓扑结构和一定时间段内的尾气排放时间序列数据。选择检测区域的拓扑结构信息来提取其中的时空特征;然后联合时空特征来处理尾气时间序列数据时间轴上的多个时间间隔周期(每小时、每日、每周)组建成尾气排放的时间序列缺失数据进行数据补全,提升了补全结果准确率。
2、本发明提供的基于时空卷积网络的机动车尾气遥测数据的多重补全方法及系统,可以补全遥测机动车尾气排放浓度缺失数据。首次使用时空图卷积和自注意力机制来提取空间和时间依赖性,生成带有权重的时空特征,而且基于时空特征结果使用改进型最近邻方法进行尾气排放浓度数据补全。
附图说明
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110694200.1/2.html,转载请声明来源钻瓜专利网。