[发明专利]事件检测方法及系统、存储介质及电子装置有效
申请号: | 202110692626.3 | 申请日: | 2021-06-22 |
公开(公告)号: | CN113645439B | 公开(公告)日: | 2022-07-29 |
发明(设计)人: | 司马华鹏;姚奥;汤毅平 | 申请(专利权)人: | 宿迁硅基智能科技有限公司 |
主分类号: | H04N7/18 | 分类号: | H04N7/18;G10L25/78;G10L25/48;G06N3/04;G06V20/52;G06V20/40;G06V10/774;G06V10/82 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 阚梦诗 |
地址: | 223808 江苏省宿*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 事件 检测 方法 系统 存储 介质 电子 装置 | ||
1.一种事件检测方法,其特征在于,包括:
获取目标区域的音频数据,其中,所述目标区域为预设的监控区域;
根据所述音频数据与预设的判定条件确定独立事件,并根据所述独立事件确定完整事件发生的概率;其中,所述独立事件与所述判定条件相对应,所述完整事件包括一个或多个所述独立事件;
其中,所述根据所述音频数据与预设的判定条件确定独立事件,并根据所述独立事件确定完整事件发生的概率,包括:
根据所述音频数据与所述判定条件确定第一独立事件和/或第二独立事件,并根据所述第一独立事件和/或所述第二独立事件发生的情况确定完整事件发生的概率;其中,所述第一独立事件与第一判定条件对应,所述第二独立事件与第二判定条件对应,所述完整事件由所述第一独立事件和/或所述第二独立事件构成;
所述根据所述音频数据与所述判定条件确定第一独立事件和/或第二独立事件,并根据所述第一独立事件和/或所述第二独立事件发生的情况确定完整事件发生的概率,包括:
根据所述音频数据与所述判定条件确定第一独立事件和/或第二独立事件,并根据所述第一独立事件确定第一概率值,根据所述第二独立事件确定第二概率值;其中,所述第一概率值用于指示所述第一独立事件存在的情形下,所述完整事件发生的概率;所述第二概率值用于指示所述第二独立事件存在的情形下,所述完整事件发生的概率;
根据所述第一概率值和/或所述第二概率值确定所述完整事件发生的概率。
2.根据权利要求1所述的方法,其特征在于,所述根据所述音频数据与所述判定条件确定第一独立事件和/或第二独立事件,并根据所述第一独立事件和/或所述第二独立事件发生的情况确定完整事件发生的概率,包括:
根据所述音频数据确定音频时序信息,其中,所述音频时序信息用于指示所述第一独立事件与所述第二独立事件的时序关系;
根据以下对象确定所述完整事件发生的概率:所述音频时序信息,所述第一独立事件是否发生的情况,以及所述第二独立事件是否发生的情况。
3.根据权利要求1所述的方法,其特征在于,所述方法还包括:
在所述完整事件发生的概率大于或等于预设阈值的情形下,输出所述完整事件的类型。
4.根据权利要求1所述的方法,其特征在于,所述根据所述音频数据与预设的判定条件确定独立事件,并根据所述独立事件确定完整事件发生的概率,包括:
根据音频数据与预设的判定条件通过第一神经网络模型与第二神经网络模型确定完整事件发生的概率;其中,所述第一神经网络模型根据所述音频数据与所述判定条件获取所述独立事件所对应的第一特征向量,其中,所述第一神经网络模型为使用第一样本数据训练的卷积神经网络模型,所述第一样本数据包括独立事件音数据和对应的独立事件标签,所述独立事件标签用于指示所述独立事件的类型;
所述第二神经网络模型根据所述第一特征向量确定所述完整事件发生的概率,并在所述完整事件发生的概率大于或等于预设阈值的情形下,输出所述完整事件的类型,其中,所述第二神经网络模型为使用第二样本数据训练的卷积神经网络模型,所述第二样本数据包括完整事件音数据和对应的完整事件标签,所述完整事件标签用于指示所述完整事件的类型,所述完整事件音数据中包含一个或多个独立事件音数据。
5.根据权利要求4所述的方法,其特征在于,所述第一神经网络模型根据所述音频数据与所述判定条件获取所述独立事件所对应的第一特征向量,包括:
通过共享网络层获取所述音频数据的局部特征向量;
通过第一分类层根据所述音频数据的局部特征向量提取N个独立事件音分别对应的所述第一特征向量,其中,N为大于0的整数,所述第一分类层包括N个分类器,每一分类器分别对应一个判定条件。
6.根据权利要求5所述的方法,其特征在于,所述第二神经网络模型根据所述第一特征向量确定所述完整事件发生的概率,包括:
对所述第一神经网络模型输出的所述N个独立事件音的第一特征向量进行编码;
对编码后的所述N个独立事件音的第一特征向量进行识别;
通过根据第一特征向量的识别结果确定所述完整事件发生的概率。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宿迁硅基智能科技有限公司,未经宿迁硅基智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110692626.3/1.html,转载请声明来源钻瓜专利网。