[发明专利]基于单目相机的可通行区域检测方法、装置及存储介质有效

专利信息
申请号: 202110676537.X 申请日: 2021-06-18
公开(公告)号: CN113409268B 公开(公告)日: 2023-04-18
发明(设计)人: 曾碧;郭植星;刘建圻 申请(专利权)人: 广东工业大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06T7/60;G06V10/46
代理公司: 广州嘉权专利商标事务所有限公司 44205 代理人: 黎扬鹏
地址: 510062 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 相机 通行 区域 检测 方法 装置 存储 介质
【说明书】:

发明公开了一种基于单目相机的可通行区域检测方法、装置及存储介质;该方法利用单目SLAM特征点法计算得到三维特征点集,在相机视野范围内使用障碍物距离求解器计算当前位置与邻近特征点集的最小距离,将得到的最近障碍物距离放入代价求解器中计算得到对应代价值,最后视觉代价地图经过重投影变换获得可通行方向;同时为了解决单目SLAM中的尺度不一致问题,对相机高度和旋转平面进行了一定约束,计算得到尺度因子,通过该尺度因子对可通行区域的尺度进行更正;本发明实施例仅需要低成本的单目相机便可实现可通行区域的检测任务,可方便地移植到轻量级的移动设备。本发明可广泛应用于图像处理技术领域。

技术领域

本发明涉及图像处理技术领域,尤其是一种基于单目相机的可通行区域检测方法、装置及存储介质。

背景技术

自主机器人要进行作业首先要满足避障导航规划的能力。目前基于不同的传感器,如激光扫描仪、惯性传感器、声纳和视觉等,已经有多种解决方案。基于激光的导航避障方法总存在激光雷达信息少、维度单一等问题,特别是救援场景等其他需要对语义分析的场景中,纯激光SLAM很难完成任务。多传感器组合的方案在机器人导航避障方面逐渐兴起,虽然组合不同类型的传感器,如超声波、视觉和红外、激光和视觉等,可以获得更加详尽的信息和准确的决策,但也增加了成本并提高了算法的复杂性。

对于小型汽车,由于其所能携带的有效载荷有限,在飞行过程中进行避障难度很大。由于电池容量有限,只能携带重量轻的传感器,如单目摄像头,这样不会对电池寿命和重量限制造成影响。对于自主机器人运动,移动机器人能够判断其相对于潜在障碍的位置是至关重要的。

目前单目视觉避障的方案及其对应的缺陷如下:

1.使用深度学习实现单目深度估计障碍物位置并进行避障,该方案中,深度估计需要预先获取数据集并进行大量训练才能得到一个好的效果,在特定场景中会发挥不错的效果,但在不同环境下效果难有保障,鲁棒性不够强;

2.利用强化学习帮助机器人进行避障决策。该方案中,强化学习利用单目RGB图像可以有效地学习如何在模拟器中躲避障碍物,而且在虚拟环境中训练的模型可以直接转移到真实机器人上,能够很好地适用于各种新的环境;但可移植性不够强,在与虚拟环境相差较大的真实环境中效果难有保障;

3.利用场景或障碍的先验知识来进行障碍物检测。例如,在预先创建用颜色区分的结构化环境,颜色提示用于分割障碍物和非障碍物。但该方法实际意义不大,只能应用于自己预先搭建的特定场景中;

4.约束摄像机在机器人平台上的位置和限定相机只能水平旋转进行地平面检测,然后利用特征点信息推导地平面的单应性约束条件来区分地面点和非地面点。该方案中,小车的颠簸或者相机的移动和特征点精准程度都会影响最终的避障效果。

发明内容

本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种基于单目相机的可通行区域检测方法、装置及存储介质。

本发明所采取的技术方案是:

一方面,本发明实施例包括一种基于单目相机的可通行区域检测方法,包括:

获取单目相机采集的图像;

利用单目SLAM特征点法对所述图像进行特征提取和特征匹配,得到三维特征点集;

确定目标区域,所述目标区域为所述图像上的任意一个区域;

对所述目标区域进行分割,得到多个子区域;

利用KD-Tree获取每个所述子区域的邻近特征点集;

通过计算所述邻近特征点集中每个邻近特征点到达相应子区域的距离,获取每个所述子区域的最近障碍物距离;

根据所述每个所述子区域的最近障碍物距离,通过代价求解器求得代价值和视觉代价地图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110676537.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top