[发明专利]一种纳米CeZnOx 有效
| 申请号: | 202110620241.6 | 申请日: | 2021-06-03 |
| 公开(公告)号: | CN113385209B | 公开(公告)日: | 2022-05-17 |
| 发明(设计)人: | 张捍民;路梦洋 | 申请(专利权)人: | 大连理工大学 |
| 主分类号: | B01J27/24 | 分类号: | B01J27/24;C02F1/30;C02F101/30 |
| 代理公司: | 大连理工大学专利中心 21200 | 代理人: | 温福雪 |
| 地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 纳米 cezno base sub | ||
1.一种纳米CeZnOx掺杂多孔氮化碳水凝胶粒子的制备方法,其特征在于,步骤如下:
1)采用微溶剂燃烧合成法制备CeZnOx样品
将六水合硝酸铈(III)和六水合硝酸锌按照摩尔比1:1混合,研磨得到均匀的乳白色粘稠物;随后,将乳白色粘稠物于烧结温度为500度、升温速率为5度每分钟条件下,烧结2-4小时,得到淡黄色粉末CeZnOx;
2)制备多孔氮化碳
将三聚氰胺和三聚氰酸按照质量比为1:1-2:1混合分散在去离子水中,搅拌24h后,烘干得到白色固体为多孔氮化碳前驱物;将多孔氮化碳前驱物研磨至颗粒;将多孔氮化碳前驱物颗粒于氮气保护下的管式炉中烧结,烧结温度为550度、升温速率为5度每分钟,烧结4h,后得到棕黄色固体多孔氮化碳;
3)配制浓度为15mg/ml的海藻酸钠水溶液,充分搅拌至混合均匀;
4)制备纳米CeZnOx掺杂多孔氮化碳水溶液
将多孔氮化碳和CeZnOx加入到去离子水中,充分搅拌,超声得到混合溶液;多孔氮化碳和CeZnOx的质量比为5:1-1:5;混合液浓度为3mg/ml;
5)将多孔氮化碳和CeZnOx的混合液加入到海藻酸钠水溶液中,两者体积比为1:1,搅拌24h,然后超声处理至少30分钟,以减少团聚;
6)步骤5)得到的混合液在80°C下浓缩反应得到均匀的粘稠浆糊状溶液;然后对粘稠浆糊状溶液进行真空脱泡超声处理去除气泡,并在室温下保存至少2小时,得到纳米CeZnOx掺杂多孔氮化碳水凝胶粒子前驱液;
7)制备纳米CeZnOx掺杂多孔氮化碳水凝胶粒子
采用机械自动挤压装置制备纳米CeZnOx掺杂多孔氮化碳水凝胶粒子,机械自动挤压装置由反应池、挤压装置和注射装置构成;将所制备的纳米CeZnOx掺杂多孔氮化碳水凝胶粒子前驱液放入注射装置中后固定,根据需求选择不同容积的注射管,将所需要粒径的针头插入注射管中;设置挤压装置的挤压速率为10-100ml/hour,以固定速率挤压注射装置,前驱液滴入反应池中进行交联反应,并在反应池中停留12h后;反应池中的反应液为CaCl2溶液,浓度是1mol/L,得到纳米CeZnOx掺杂多孔氮化碳水凝胶粒子。
2.根据权利要求1所述的制备方法,其特征在于,步骤7)制备的纳米CeZnOx掺杂多孔氮化碳水凝胶粒子的粒径大小由针头来决定,粒径大小为3-8mm。
3.一种权利要求1所述的制备方法得到的纳米CeZnOx掺杂多孔氮化碳水凝胶粒子流化床原位净化水体污染的方法,其特征在于,所用的光催化流化床由两个部分构成:浮体部分和细孔丝网部分;细孔丝网周边固定在浮体上;将纳米CeZnOx掺杂多孔氮化碳水凝胶粒子放入床体中,形成光催化流化床;光催化流化床浮于自然水体上,原位降解水体中污染物质;依据水体污染程度,增加光催化流化床的数量或纳米CeZnOx掺杂多孔氮化碳水凝胶粒子的投量;依据水体污染地点变化移动光催化流化床位置,净化完成后凝胶粒子完全回收。
4.根据权利要求3所述的方法,其特征在于,所述的细孔丝网由亲水合成纤维制成,细孔丝网的孔径小于3mm。
5.根据权利要求4所述的方法,其特征在于,所述的细孔丝网由尼龙或聚乙烯制成。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110620241.6/1.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





