[发明专利]一种基于正则化稀疏模型的滚动轴承智能故障诊断方法在审
| 申请号: | 202110610963.3 | 申请日: | 2021-06-01 |
| 公开(公告)号: | CN113340598A | 公开(公告)日: | 2021-09-03 |
| 发明(设计)人: | 雷亚国;赵军;李乃鹏;刘晓飞;杨彬 | 申请(专利权)人: | 西安交通大学 |
| 主分类号: | G01M13/045 | 分类号: | G01M13/045;G06F17/16;G06F17/15;G06F30/20 |
| 代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 贺建斌 |
| 地址: | 710049 陕*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 正则 稀疏 模型 滚动轴承 智能 故障诊断 方法 | ||
一种基于正则化稀疏模型的滚动轴承智能故障诊断方法,先计算滚动轴承前N组正常状态下振动信号的包络谱,自滚动轴承故障起始时刻后实时采集振动信号并计算包络谱;再构建并求解最小绝对收缩和选择算子LASSO回归模型,求解故障敏感频率;然后基于滚动轴承故障诊断理论知识获得故障类型诊断结果,最后融合多通道信息获得最终故障类型诊断结果;本发明克服了一般智能诊断方法可解释性差、模型可移植性差及样本需求量大的缺陷,提高了故障诊断的可靠性和准确率。
技术领域:
本发明属于滚动轴承故障诊断技术领域,具体涉及一种基于正则化稀疏模型的滚动轴承智能故障诊断方法。
背景技术:
在现代机械设备中,滚动轴承因其摩擦阻力小、互换性好、灵活度高而被广泛应用,同时由于在工作中轴承所面临的环境十分复杂,所以极易产生损伤,造成设备故障。根据有关资料显示,在机械设备中,由于滚动轴承致使机械设备故障的情况占比高达三分之一。因此,为了尽可能地避免或减少滚动轴承故障对机械设备运行状态的影响,亟需对滚动轴承进行故障诊断研究。
然而,采用原始的人工分析故障诊断技术存在严重的缺陷,其需要技术人员对设备进行实地检测,对技术水平要求较高,而且人工状态评估过程由于干扰因素多,有很高的不稳定性和误判率,从而不能准确的诊断设备的运行状态,造成人力物力资源的浪费。随着智能诊断方法的深入研究,信息挖掘与人工智能结合的滚动轴承智能故障诊断技术已逐步代替传统的人工故障诊断技术。虽然,机器学习算法的优越识别能力对滚动轴承运行的健康状态做出诊断,弥补了人工诊断的稳定性差、误判率高等缺陷,但是,往往模型的可解释性和可移植性相对较差。因此将滚动轴承的故障诊断理论知识与智能算法模型结合,对提高模型的可解释性和泛化能力具有十分重要的意义。
发明内容:
为了克服上述现有技术存在的缺点,本发明的目的在于提供一种基于正则化稀疏模型的滚动轴承智能故障诊断方法,提高滚动轴承故障诊断的可靠性和准确率。
为达到上述目的,本发明采取的技术方案如下:
一种基于正则化稀疏模型的滚动轴承智能故障诊断方法,包括以下步骤:
步骤1,计算滚动轴承前N组正常状态下振动信号的包络谱;
步骤2,自滚动轴承故障起始时刻后实时采集振动信号并计算包络谱;
步骤3,构建并求解最小绝对收缩和选择算子LASSO(Least absolute shrinkageand selection operator)回归模型;
步骤4,求解故障敏感频率;
步骤5,基于滚动轴承故障诊断理论知识获得故障类型诊断结果;
步骤6,融合多通道信息获得最终故障类型诊断结果。
所述的步骤1具体为:获取滚动轴承正常状态下所采集的单一通道前N组振动信号数据集X={x1,x2,...,xi,...,xN},其中表示第i组正常状态下的振动信号,每组振动信号包含n个数据点,即xi=[xi,1,xi,2,...,xi,n]T,其中n=T·fs,T表示采样时长,fs表示采样频率;分别对每组振动信号进行包络分析,得到N组包络谱E={e1,e2,...,ei,...,eN},其中表示第i组正常状态下的振动信号对应的包络谱,每组包络谱包含个数据点,即ei=[ei,1,ei,2,...,ei,m]T。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110610963.3/2.html,转载请声明来源钻瓜专利网。





