[发明专利]基于机器视觉的零件检测方法有效
申请号: | 202110541077.X | 申请日: | 2021-05-18 |
公开(公告)号: | CN113129304B | 公开(公告)日: | 2022-09-16 |
发明(设计)人: | 罗国富;李立伟;闫羲昊;明五一;李医中;张圣飞;马军;李晓科;何文斌;都金光;侯俊剑;曹阳;刘琨 | 申请(专利权)人: | 郑州轻工业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/62;G06V10/44;G06V10/82;G06N3/04;G06N3/08;B25J19/02;B25J15/08;B25J9/16 |
代理公司: | 郑州豫开专利代理事务所(普通合伙) 41131 | 代理人: | 王金 |
地址: | 450000 *** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 机器 视觉 零件 检测 方法 | ||
1.基于机器视觉的零件检测方法,用于识别摄像头所拍摄的零件图像中的零件缺陷,通过基于机器视觉的零件检测机构来进行;
基于机器视觉的零件检测机构包括机架,以被检测零件的整体移动方向为下游方向,机架上由上游至下游方向依次设有输入传送机构、装夹拍摄机构和输出传送机构;输入传送机构的传送面与输出传送机构的传送面相平齐;机架上还设有电控装置,电控装置连接有显示屏和声光报警器,电控装置内具有图像识别模块;
其特征在于:装夹拍摄机构包括铰接在机架顶部的相机机械臂和安装在机架中下部的装夹装置;相机机械臂由伺服电机驱动;
相机机械臂的自由端设有第一摄像头,相机机械臂的自由端或者相机机械臂上方的固定结构上设有照明灯,伺服电机、照明灯和第一摄像头均与电控装置相连接;
装夹装置包括用于装夹零件的装夹结构、用于驱动装夹部分旋转的纵向旋转结构、横向旋转结构和纵向翻转结构;
初始状态下,纵向翻转结构的翻转方向、纵向旋转结构的旋转方向以及横向旋转结构的旋转方向两两垂直;
还包括有磁粉检测装置,磁粉检测装置包括检测台,检测台一侧固定连接有储粉箱,储粉箱中存储有磁粉;检测台上具有用于放置零件的零件位置,检测台上设有电动喷枪、吸粉器和连接杆,电动喷枪的进管连接储粉箱的底部,电动喷枪的喷射方向朝向零件位置的零件;吸粉器的吸粉口朝向零件位置的零件,吸粉器的出粉口朝向储粉箱;连接杆上安装有第二摄像头,第二摄像头的拍摄方向朝向零件位置的零件;电动喷枪、吸粉器和第二摄像头均与电控装置相连接;
纵向翻转结构包括支撑架,支撑架前端向上通过转轴转动连接有底框,底框的中后部向下铰接有用于驱动底框纵向翻转的翻转气缸,翻转气缸向下与机架相铰接,翻转气缸与电控装置相连接;
横向旋转结构包括旋转用减速电机和旋转框架,旋转用减速电机的输出轴为其转动部分且其壳体为其固定部分,旋转用减速电机的固定部分和转动部分分别连接底框或旋转框架;旋转用减速电机连接电控装置;
纵向旋转结构包括固定连接在旋转框架上的安装架,安装架转动连接有平行相对设置的第一转动圈和第二转动圈,第一转动圈的一侧沿周向凸设有第一滚动导环,第二转动圈的一侧沿周向凸设有第二滚动导环;第一滚动导环下方的安装架上设有两个用于支撑第一滚动导环的第一槽轮,第一滚动导环插入第一槽轮的轮槽内;
第二滚动导环下方的安装架上设有两个用于支撑第二滚动导环的第二槽轮,第二滚动导环插入第二槽轮的轮槽内;
两个第一槽轮和两个第二槽轮组成支撑槽轮组,支撑槽轮组中至少一个槽轮连接有槽轮驱动电机且该槽轮作为主动槽轮,槽轮驱动电机与电控装置相连接;
安装架上安装有压轮,压轮向下与第一转动圈的底部内表面或第二转动圈的底部内表面相压接;
装夹结构包括固定连接在第一转动圈和第二转动圈之间的前连接板和后连接板,前连接板和后连接板之间安装有两个装夹用滚筒,两个装夹用滚筒内分别设有电磁铁,电磁铁与电控装置相连接;两个装夹用滚筒之间设有驱动用滚筒,驱动用滚筒安装在前连接板和后连接板之间,驱动用滚筒连接有滚筒驱动电机,滚筒驱动电机连接电控装置;两个装夹用滚筒用于滚动输送零件以及磁力装夹零件;拍照时滚筒驱动电机用于微调零件位置;
两个装夹用滚筒和驱动用滚筒位于同一平面,将该平面称为装夹平面;装夹结构具有对接状态,装夹结构位于对接状态时装夹平面与输入传送机构的传送面以及输出传送机构的传送面相平齐并且对接;
装夹用滚筒下方的旋转框架或安装架上设有用于检测零件的零件传感器,零件传感器与电控装置相连接;
所述输入传送机构和输出传送机构结构相同,均包括并排间隔安装在辊架上的若干传送辊,传送辊包括一个主动辊和若干从动辊,辊架安装在机架上;机架上或辊架上安装有用于驱动主动辊的辊筒驱动电机,辊筒驱动电机与电控装置相连接;
磁粉检测装置和装夹结构之间设有用于将零件转运至磁粉检测装置上的转运机械手;
基于机器视觉的零件检测方法采用加权混合深度学习目标辨识算法,加权混合深度学习目标辨识算法的元深度学习算法包括RCNN算法、Faster-RCNN算法、R-FCN算法、YOLO算法、SSD算法和DenseBox算法;加权混合深度学习目标辨识算法存储于电控装置的图像识别模块中;所述6类元深度学习算法均通过离线进行训练;
所述加权混合深度学习目标辨识算法在实时检测时,由电控装置通过第一摄像头获取零件六个表面多角度彩色图像,图像分辨率为1280像素×720像素;六个表面图像包括上表面、下表面、前表面、后表面、左表面和右表面的图像;
对零件的各表面图像均执行以下缺陷标记处理:
(1)采用RCNN算法,初步判断当前图像是否存在表面缺陷,并标记所述表面缺陷对应的矩形区域,具体标记为RA1,RA2,RAm;
(2)采用Faster-RCNN算法,初步判断当前图像是否存在表面缺陷,并标记所述表面缺陷对应的矩形区域,具体标记为RB1,RB2,RBn;
(3)采用R-FCN算法,初步判断当前图像是否存在表面缺陷,并标记所述表面缺陷对应的矩形区域,具体标记为RC1,RC2,RCo;
(4)采用YOLO算法,初步判断当前图像是否存在表面缺陷,并标记所述表面缺陷对应的矩形区域,具体标记为RD1,RD2,RDw;
(5)采用SSD算法,初步判断当前图像是否存在表面缺陷,并标记所述表面缺陷对应的矩形区域,具体标记为RE1,RE2,REv;
(6)采用DenseBox算法,初步判断当前图像是否存在表面缺陷,并标记所述表面缺陷对应的矩形区域,具体标记为RF1,RF2,RFk;
(7)如果m、n、o、w、v和k中有四个以上的数值为0,则所述加权混合深度学习目标辨识算法判断当前图像不存在表面缺陷,否则转到流程(8);
(8)检查各元深度学习算法标记的缺陷对应的矩形区域的位置,两两判断是否相邻或重叠;对相邻或重叠的矩形区域进行合并,直到新生成的最终矩形区域均不重叠且不相邻为止,最终的矩形区域标记为RG1,RG2,RGq,并将零件的该表面标记为疑似缺陷表面;
对一个零件的六个表面均进行缺陷标记处理后,由磁粉检测装置对零件的每一个疑似缺陷表面进行二次检测。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州轻工业大学,未经郑州轻工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110541077.X/1.html,转载请声明来源钻瓜专利网。