[发明专利]一种基于人工智能的媒体内容真实度分析方法有效

专利信息
申请号: 202110523827.0 申请日: 2021-05-13
公开(公告)号: CN113158082B 公开(公告)日: 2023-01-17
发明(设计)人: 聂佼颖 申请(专利权)人: 和鸿广科技(上海)有限公司
主分类号: G06F16/9536 分类号: G06F16/9536;G06F40/30;G06F40/289;G06F40/242;G06Q50/00
代理公司: 上海塔科专利代理事务所(普通合伙) 31380 代理人: 谢安军
地址: 200080 上海市*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 人工智能 媒体 内容 真实 分析 方法
【权利要求书】:

1.一种基于人工智能的媒体内容真实度分析方法,其特征在于,所述方法包括:

对同一新闻内容下不同社交用户发表的评论内容进行关键词提取以得到每个社交用户的第一评论信息,并对每个第一评论信息中的元素集合进行对齐以求得每个社交用户之间的元素交集,其中,所述第一评论信息包括多个元素集合,所述元素集合用于表征新闻事件的发生地点、发生时间、涉及的人物和/或组织机构;

利用情感词典对每个社交用户发表的评论内容进行情感词提取以得到每个社交用户的第二评论信息,并从每个社交用户的第二评论信息中提取对应社交用户的情感特征,其中,所述第二评论信息包括多个情感元素词,所述情感元素词用于表征每个社交用户的情感倾向;

基于每个社交用户之间的元素交集和情感相似度确定每个社交用户之间的评论相关度,并将所述评论相关度作为边的权重值为不同社交用户构建相应的关联拓扑图,其中,所述情感相似度由每个社交用户的情感特征对应的特征向量之间的余弦相似度确定;

基于所述关联拓扑图和每个社交用户的深层语义特征识别新闻内容中的焦点内容,并将所述焦点内容输入至验证模型中以判断所述焦点内容是否为虚假新闻内容;

基于所述关联拓扑图和每个社交用户的深层语义特征识别新闻内容中的焦点内容包括:

获取关联拓扑图中每个社交用户之间边的权重值,并将所述权重值与预设阈值进行比较;在所述权重值小于预设阈值时,将所述权重值对应的边从关联拓扑图中删除;

获取与对应社交用户存在关联关系的所有相邻社交用户,对每个社交用户之间边的权重值进行迭代传播直至收敛得到每个社交用户之间的关联评论特征,其中,所述关联关系用于表征对应社交用户之间存在边;

获取对应评论内容包含的每个词汇的词向量,并将每个词汇的词向量顺序输入至双向长短期记忆网络中以获取每个词汇产生的前向隐式状态序列和后向隐式状态序列,将预设时刻的前向隐层状态和后向隐层状态进行拼接并编码以得到每个社交用户的深层语义特征;

基于关联评论特征和深层语义特征识别不同社交用户在同一新闻内容中关注的同一焦点内容。

2.根据权利要求1所述的方法,其特征在于,所述对同一新闻内容下不同社交用户发表的评论内容进行关键词提取以得到每个社交用户的第一评论信息包括:

对每个社交用户发表的评论内容进行数据处理以过滤评论内容中的无用信息,对处理后的评论内容进行分词以得到若干分词词汇,其中,所述无用信息包括超链接、图片和符号元素;

基于公共语料库中的常用关键词和关键词识别规则构件关键词识别的初始特征模板,根据所述初始特征模板对分词词汇进行关键词匹配以对分词词汇中的关键词进行初步筛选;所述关键词识别规则包括根据先验特征字词指定的边界判定当前词汇的边界,并判断当前词汇的附加特征词是否与先验附加特征词相同;若相同,根据常用关键词判断当前词汇是否为关键词;

对初始特征模板的观察窗口进行扩展以获取每个初步筛选的关键词的上下文信息,构造关键词识别规则的多元识别特征以对初始特征模板的匹配规则进行更新得到复合特征模板,利用所述复合特征模板对所述关键词的上下文信息进行识别以对所述关键词进行词汇修正;

获取修正后的每个关键词的元素类型,以为相同元素类型的关键词生成相应的元素集合,并对所有元素集合进行排序以得到社交用户的第一评论信息。

3.根据权利要求2所述的方法,其特征在于,所述元素类型包括人名、地名、机构名、组织名和时间。

4.根据权利要求3所述的方法,其特征在于,所述先验附加特征词分为前缀特征词和后缀特征词,所述先验附加特征词包括用于对地名进行识别的先验地名附加特征词。

5.根据权利要求4所述的方法,其特征在于,更新后的匹配规则包括:将复合特征模板中的尾部先验特征字词作为关键词识别的尾部边界,将复合特征模板中的首部先验特征字词作为关键词识别的首部边界;

根据上下文信息判断当前关键词的后缀特征词是否可以与所述关键词进行组合,根据上下文信息判断当前关键词的前缀特征词是否可以与所述关键词进行组合。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于和鸿广科技(上海)有限公司,未经和鸿广科技(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110523827.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top