[发明专利]一种基于深度学习的检测门把手归位和弯曲的方法在审

专利信息
申请号: 202110522549.7 申请日: 2021-05-13
公开(公告)号: CN113160220A 公开(公告)日: 2021-07-23
发明(设计)人: 赵准登;彭智浩 申请(专利权)人: 聚时科技(上海)有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06N3/08
代理公司: 湖北天领艾匹律师事务所 42252 代理人: 王能德
地址: 200000 上海市杨浦区*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 检测 门把手 归位 弯曲 方法
【权利要求书】:

1.一种基于深度学习的检测门把手归位和弯曲的方法,包括以下步骤:

步骤1.基于目标检测模型和语义分割模型,获取门把手掩膜;

步骤2.获取掩膜最小外接矩形,得到矩形的宽度w、高度h,矩形的宽与x轴正方形的角度θ;

步骤3.设定角度阈值θ_Thresh,获取门把手正常位置的最小外接矩形宽与x轴正方向的夹角θ_Origin,并设定高宽比阈值Ratio,分别判断门把手归位及发生变形弯曲情况:当|θ-θ_Origin|θ_Thresh,说明门把手未归位,反之则已归位;当w/hRatio则说明门把手发生变形弯曲,反之则没有。

2.根据权利要求1所述的检测门把手归位和弯曲的方法,其特征在于,所述目标检测模型构建方法为:采集标准门图像,标注门把手区域及轮廓,然后基于图像和门把手区域标签并训练门把手目标检测模型。

3.根据权利要求1所述的检测门把手归位和弯曲的方法,其特征在于,所语义分割模型构建方法为:采集标准门图像,标注门把手区域及轮廓,裁剪并生成门把手轮廓的标注,然后对裁剪图像和对应的标签训练门把手语义分割模型。

4.根据权利要求1所述的检测门把手归位和弯曲的方法,其特征在于,所述步骤1中获取门把手掩膜的过程为:对裁剪图像进行语义分割,分割出门把手区域的0-1二值掩膜,对掩膜进行连通域分析,实例化出每个门把手区域。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于聚时科技(上海)有限公司,未经聚时科技(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110522549.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top