[发明专利]实木板材颜色智能分类方法有效
申请号: | 202110506907.5 | 申请日: | 2021-05-10 |
公开(公告)号: | CN113012156B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 刘英;王争光;丁奉龙;杨雨图;倪超;庄子龙;周海燕;费叶琦;唐敏;缑斌丽 | 申请(专利权)人: | 南京林业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/90;G06V10/56;G06V10/762;G06V10/764;G06V10/82;G06K9/62;G06N3/08;G06N20/00 |
代理公司: | 南京科阔知识产权代理事务所(普通合伙) 32400 | 代理人: | 王清义 |
地址: | 210037 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 实木 板材 颜色 智能 分类 方法 | ||
1.一种实木板材颜色智能分类方法,其特征在于,包括:
步骤1:采集多张实木板材图片,对实木板材图片进行预处理;
步骤2:将每张实木板材图片均从RGB彩色空间分别转换到Lab彩色空间和HSV彩色空间;
步骤3:分别获取Lab彩色空间图片的颜色的一阶矩和二阶矩和HSV彩色空间图片的颜色的一阶矩和二阶矩;
步骤4:使用K-Means聚类算法对所有的Lab彩色空间的图片和HSV彩色空间的图片进行无监督学习,从而对采集的多张实木板材图片实现初步聚类,初步聚类为三类,记为a类、b类和c类;
步骤5:对初步聚类后的每张实木板材图片进行低通滤波,获得底色;采用基于K-Means聚类算法的主颜色提取方法对a类、b类和c类中低通滤波后的每张实木板材图片进行主颜色提取,获取每类中的主颜色含量变化的一般规律,剔除不符合一般规律的实木板材图片,进一步将a类、b类和c类中的实木板材图片细划为A类、B类和C类;
步骤6:对初步聚类后的每张实木板材图片进行高通滤波,获得实木板材图片的纹理信息,根据a类、b类和c类中的每张实木板材图片的纹理信息中的曲、直,将每张实木板材图片分别划分为直纹或曲纹;
步骤7、根据步骤5和步骤6的分类结果给每张实木板材图片贴标签,所述标签包括A类直纹、B类直纹、C类直纹、A类曲纹、B类曲纹和C类曲纹;
步骤8:将已贴标签的实木板材图片作为样本,将所有样本分为训练集、验证集和测试集;
步骤9:使用训练集对pytorch图像分类器进行训练,获得实木板材颜色估计模型,使用验证集对实木板材颜色估计模型进行验证,调整模型参数,得到最优的实木板材颜色分类模型,使用测试集检验最优的实木板材颜色分类模型的性能;
步骤10:将待分类的实木板材图片输入到最优的实木板材颜色分类模型中,获得实木板材的标签信息,从而实现实木板材的颜色分类。
2.根据权利要求1所述的实木板材颜色智能分类方法,其特征在于,
所述的步骤5具体为:
对初步聚类后的每张实木板材图片进行低通滤波,获得底色;
采用基于K-Means聚类算法的主颜色提取方法对a类中低通滤波后的每张实木板材图片进行主颜色提取,获取a类中的主颜色含量变化的一般规律,剔除不符合一般规律的实木板材图片,留下的多张实木板材图片记为A类;
采用基于K-Means聚类算法的主颜色提取方法对b类中低通滤波后的每张实木板材图片进行主颜色提取,获取b类中的主颜色含量变化的一般规律,剔除不符合一般规律的实木板材图片,留下的多张实木板材图片记为B类;
采用基于K-Means聚类算法的主颜色提取方法对c类中低通滤波后的每张实木板材图片进行主颜色提取,获取c类中的主颜色含量变化的一般规律,剔除不符合一般规律的实木板材图片,留下的多张实木板材图片记为C类。
3.根据权利要求1所述的实木板材颜色智能分类方法,其特征在于,所述训练集、验证集和测试集均包括A类直纹的实木板材图片、B类直纹的实木板材图片、C类直纹的实木板材图片、A类曲纹的实木板材图片、B类曲纹的实木板材图片和C类曲纹的实木板材图片。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京林业大学,未经南京林业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110506907.5/1.html,转载请声明来源钻瓜专利网。