[发明专利]训练模型的方法及系统和预测序列数据的方法及系统在审
申请号: | 202110497221.4 | 申请日: | 2019-04-28 |
公开(公告)号: | CN113112030A | 公开(公告)日: | 2021-07-13 |
发明(设计)人: | 姚权铭;时鸿志 | 申请(专利权)人: | 第四范式(北京)技术有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00 |
代理公司: | 北京铭硕知识产权代理有限公司 11286 | 代理人: | 朱志玲;田方 |
地址: | 100085 北京市海淀区清*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 训练 模型 方法 系统 预测 序列 数据 | ||
1.一种训练用于预测序列数据的机器学习模型的方法,包括:
获取序列训练样本集合,其中,所述序列训练样本集合包括针对多个对象中的每个对象的多条序列训练样本,并且每个序列训练样本包括按时间顺序排列的多个序列数据;
基于所述序列训练样本集合,训练所述机器学习模型,
其中,所述机器学习模型是包括两个隐状态层的隐马尔可夫模型,其中,第一隐状态层中包括所述多个对象中的每个对象的个性化隐状态,第二隐状态层中包括由所述多个对象共享的多个共享隐状态。
2.如权利要求1所述的方法,其中,所述多个序列数据涉及对象在不同时间点的行为数据,所述机器学习模型被训练为针对对象的按时间顺序排列的一系列历史行为数据来预测对象在所述一系列历史行为数据之后的下一行为数据;或者
所述多个序列数据涉及对象在不同时间点的状态数据,所述机器学习模型被训练为针对对象的按时间顺序排列的一系列历史状态数据来预测对象的在所述一系列历史属性数据之后的下一状态数据。
3.如权利要求1所述的方法,其中,获取序列训练样本集合的步骤包括:
获取所述多个对象的历史数据记录集合;
基于所述多个对象的历史数据记录集合构建所述序列训练样本集合,其中,对于每个对象的按时间顺序排列的多条历史数据记录,如果相邻的两条历史数据记录之间的时间间隔满足预设条件,则进行切分,进而得到该对象的多条序列训练样本。
4.一种存储指令的计算机可读存储介质,其中,当所述指令被至少一个计算装置运行时,促使所述至少一个计算装置执行如权利要求1至3中的任一权利要求所述的方法。
5.一种包括至少一个计算装置和存储指令的至少一个存储装置的系统,其中,所述指令在被所述至少一个计算装置运行时,促使所述至少一个计算装置执行如权利要求1至3中的任一权利要求所述的方法。
6.一种训练用于预测序列数据的机器学习模型的系统,包括:
训练样本获取装置,被配置为获取序列训练样本集合,其中,所述序列训练样本集合包括针对多个对象中的每个对象的多条序列训练样本,并且每个序列训练样本包括按时间顺序排列的多个序列数据;
训练装置,被配置为基于所述序列训练样本集合,训练所述机器学习模型,
其中,所述机器学习模型是包括两个隐状态层的隐马尔可夫模型,其中,第一隐状态层中包括所述多个对象中的每个对象的个性化隐状态,第二隐状态层中包括由所述多个对象共享的多个共享隐状态。
7.一种利用机器学习模型预测序列数据的方法,包括:
获取对象的序列预测样本,其中,所述序列预测样本包括所述对象的按时间顺序排列的多个序列数据;
利用所述机器学习模型,针对所述序列预测样本执行预测来提供关于所述多个序列数据之后的下一序列数据的预测结果,
其中,所述机器学习模型被事先训练为针对按时间顺序排列的一系列序列数据来预测所述一系列序列数据之后的下一序列数据,并且所述机器学习模型是包括两个隐状态层的隐马尔可夫模型,其中,第一隐状态层中包括多个对象中的每个对象的个性化隐状态,第二隐状态层中包括由所述多个对象共享的多个共享隐状态。
8.一种存储指令的计算机可读存储介质,其中,当所述指令被至少一个计算装置运行时,促使所述至少一个计算装置执行如权利要求7所述的方法。
9.一种包括至少一个计算装置和存储指令的至少一个存储装置的系统,其中,所述指令在被所述至少一个计算装置运行时,促使所述至少一个计算装置执行如权利要求7所述的方法。
10.一种利用机器学习模型预测序列数据的系统,包括:
预测样本获取装置,被配置为获取对象的序列预测样本,其中,所述序列预测样本包括所述对象的按时间顺序排列的多个序列数据;
预测装置,被配置为利用所述机器学习模型,针对所述序列预测样本执行预测来提供关于所述多个序列数据之后的下一序列数据的预测结果,
其中,所述机器学习模型被事先训练为针对按时间顺序排列的一系列序列数据来预测所述一系列序列数据之后的下一序列数据,并且所述机器学习模型是包括两个隐状态层的隐马尔可夫模型,其中,第一隐状态层中包括多个对象中的每个对象的个性化隐状态,第二隐状态层中包括由所述多个对象共享的多个共享隐状态。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于第四范式(北京)技术有限公司,未经第四范式(北京)技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110497221.4/1.html,转载请声明来源钻瓜专利网。