[发明专利]一种输电线路涉鸟故障相关鸟种图像识别方法有效
| 申请号: | 202110405605.9 | 申请日: | 2021-04-15 |
| 公开(公告)号: | CN113255661B | 公开(公告)日: | 2022-07-12 |
| 发明(设计)人: | 邱志斌;石大寨;廖才波;朱轩 | 申请(专利权)人: | 南昌大学 |
| 主分类号: | G06V10/22 | 分类号: | G06V10/22;G06V10/774;G06K9/62;G06N3/04;G06T7/11;G06T7/194 |
| 代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 袁红梅 |
| 地址: | 330000 江西省*** | 国省代码: | 江西;36 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 输电 线路 故障 相关 图像 识别 方法 | ||
本发明公开了一种输电线路涉鸟故障相关鸟种图像识别方法,首先通过收集输电线路周围的鸟种信息,建立涉鸟故障相关鸟种图像数据库,基于类别激活图的方法对鸟种图像进行去背景预处理;然后,利用四种深度卷积神经网络建立学习模型,并通过ImageNet数据集对其进行预训练,对预训练后的模型网络结构进行微调,利用预处理后的鸟种图像训练集对微调后的模型进行重新训练,并对测试集进行分类识别;最后,根据四种网络模型的分类准确率,采用线性加权法建立一种融合多卷积网络的涉鸟故障相关鸟种图像识别模型,对鸟种图像进行分类识别。本发明能够为输电线路运维人员提供正确识鸟的方法手段,有助于实现渉鸟故障的差异化防治,降低渉鸟故障跳闸率。
技术领域
本发明涉及输电线路领域,具体涉及一种输电线路涉鸟故障相关鸟种图像识别方法。
背景技术
随着电网的大规模建设与生态环境的改善,鸟类活动与输电线路的矛盾日益突出,渉鸟故障已成为线路跳闸的重要原因。由于渉鸟故障具有突发性,发生故障后往往无法判断是何种鸟类引起,难以针对性地加装防鸟措施。尽管电网运行单位已经统计出输电线路渉鸟故障相关鸟种名录及其可能引发的故障类型,但由于运维人员缺乏鸟类学知识,因此在巡线过程中虽然可以拍摄到活动在线路周围的鸟种,但是难以判断其是否会引起涉鸟故障及故障类型,从而无法开展差异化的防治工作。为解决此类问题,亟需一种输电线路涉鸟故障相关鸟种图像识别方法。
目前针对输电线路相关鸟种图像识别研究主要局限于鸟类检测这种粗粒度的二分类问题,具体针对输电线路渉鸟故障危害鸟种的多分类识别研究较少,其原因在于巡线过程中采集到的鸟类图像数量有限,将其用于训练一个全新的网络容易出现泛化能力不足的问题,而采用特定鸟种图像数据集训练得到的网络又难以匹配涉鸟故障相关鸟种图像识别的任务。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种输电线路涉鸟故障相关鸟种图像识别方法,能够对渉鸟故障相关鸟种图像进行准确识别,为电网运维人员开展差异化防鸟提供参考依据。
为实现上述目的,本发明提供如下技术方案:一种输电线路涉鸟故障相关鸟种图像识别方法,包括如下步骤:
S1:收集输电线路渉鸟故障相关鸟种图像,建立包含N种鸟类的图像数据集,将鸟种图像分为训练集和测试集;
S2:构建VGG16卷积神经网络模型,采用ImageNet数据库对其进行预训练,然后移去卷积层“conv5-3”后面的所有层,用一个“卷积+全局平均池化+全连接+输出”的结构替代原有的“pool5”—“prob”层,采用公开鸟种图像数据集对修改后的卷积模型进行训练,通过训练好的模型提取涉鸟故障相关鸟种图像的CAM类别激活图,利用类别激活图对鸟种图像进行去背景预处理,得到包含少量背景的鸟种图像;
S3:采用AlexNet、VGG16、ResNet50和InceptionV3四种深度卷积神经网络建立学习模型,利用ImageNet数据集对网络模型进行预训练;
S4:对预训练模型进行微调,通过模型迁移使其匹配涉鸟故障相关鸟种的图像识别任务,对于AlexNet和VGG16,将最后一个全连接层“fc8”的维数由原来的1×1000调整为1×N;对于ResNet50和InceptionV3,删除原网络中的最后3层“fc1000”、“fc1000_softmax”和“ClassificationLayer_fc1000”,以一个包含1×N的全连接层、1×N的softmax层以及N分类输出层的结构代替;
S5:采用输电线路渉鸟故障相关鸟种图像训练集对微调后的四种深度卷积神经网络模型进行重新训练,利用训练好的网络模型对鸟种图像测试集进行分类识别,得到四种模型的分类准确率ai(i=1,2,3,4),根据计算四种网络结构对应的权重系数qi(i=1,2,3,4);
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南昌大学,未经南昌大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110405605.9/2.html,转载请声明来源钻瓜专利网。





