[发明专利]一种移轴对中式微透镜阵列加工装置及方法有效
申请号: | 202110392029.9 | 申请日: | 2021-04-13 |
公开(公告)号: | CN113210636B | 公开(公告)日: | 2022-11-25 |
发明(设计)人: | 张鑫泉;王震东;任明俊;张哲;朱利民 | 申请(专利权)人: | 霖鼎光学(上海)有限公司 |
主分类号: | B23B5/00 | 分类号: | B23B5/00;B23B25/06;B28D1/16;B28D5/00 |
代理公司: | 上海泰能知识产权代理事务所(普通合伙) 31233 | 代理人: | 钱文斌;宋缨 |
地址: | 201109 上海市*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 式微 透镜 阵列 加工 装置 方法 | ||
本发明涉及一种移轴对中式微透镜阵列加工装置和方法,装置包括基座,所述基座上安装有移动方向相互垂直设置的机床X轴和机床Y轴,所述机床X轴的滑台上设置有机床Z轴,所述机床Z轴的移动方向分别与所述机床X轴和机床Y轴垂直,所述机床Z轴上设置有机床B轴,所述机床Y轴上设置有机床C轴,其特征在于,所述机床B轴表面固定有加工刀具;所述机床C轴表面固定有真空吸盘,所述真空吸盘表面固定有控制模块,所述控制模块上安装有二维定位模块,所述二维定位模块上安装有工件夹具;所述二维定位模块用于调整工件夹具上的待加工工件与所述机床C轴的相对位置。本发明能够提高微透镜阵列的加工效率,且每个微透镜单元的加工质量统一。
技术领域
本发明涉及超精密加工技术领域,特别是涉及一种移轴对中式微透镜阵列加工装置及方法。
背景技术
微透镜阵列是指一定微透镜形貌规则阵列分布后得到的具有特定光学性能的微结构表面,被广泛应用于照明、光束整形、光学成像等光电领域。目前微结构表面的加工方式主要包括光刻技术、高能束制造技术、特种能场加工技术以及超精密机械加工技术。光刻技术是利用曝光技术在光刻胶表面形成所需的几何结构图形,再通过刻蚀方法将图形复刻到基底上,该方法具有较高的制造分辨率,但通常只适用于二元结构的加工制造,且设备成本较高。高能束制造技术是指利用包括激光束、电子束、离子束等高密度能量束改变材料的局部几何与物理特性,从而加工出满足设计形状和设计性能的工件,该方法的加工精度也很高,但是相对加工效率较低,无法应用于大尺寸微透镜阵列的加工。特种能场加工使用包括超声、微波、电磁场等方式辅助加工,可以减小切削力,提高切削效率,适用于硬脆材料的加工,但是由于目前相关理论研究以及控制机理的不完善,尚无法适用于复杂三维微结构表面的加工制造。
超精密机械加工技术是目前发展最为成熟,应用最为广泛的一种微结构表面制备方式,即可用于特定光学材料表面微结构的直接加工,也可用于制备批量化复制所用超精密模具。基于金刚石刀具的超精密机械加工已被用于球面、非球面、自由曲面等微结构的制备,可以实现精度高于0.1um,表面粗糙度小于10nm的加工质量。目前,可应用于微透镜阵列加工的超精密机械加工方式主要有超精密铣削以及基于单点金刚石车削的慢刀伺服和快刀伺服三种方法,以上方法的不同之处在于产生切削速度的原理不同。
超精密铣削使用的是额外的高精度气浮主轴,使小直径的球头铣刀高速回转从而实现材料去除,通常需要三个机床运动轴实现金刚石刀具铣削头移动路径的控制,以螺旋线刀具轨迹进行切削进给。超精密微铣削具有较高的加工灵活性,实际可用于制备陡坡或者非连续结构,非球面,非旋转对称透镜以及其他的自由曲面。在使用超精密铣削加工微透镜阵列时,每一个微透镜单元都作为独立的结构进行加工,加工过程稳定,因此得到的微透镜阵列中的每一个微透镜单元的加工质量一致。然而为了保证一定的表面粗糙度,对金刚石铣削头的移动速度有较大限制,相比于车削等其他超精密机械加工技术,三轴微铣削的缺点是需要较长的加工时间,加工效率较低,也因此无法加工结构复杂尺寸较大的微透镜阵列。
单点金刚石车削加工精度高,对刀方便,加工效率高,但是通常只能应用于制造旋转对称结构的元器件,被认为无法直接加工微透镜阵列等非旋转对称结构。为此,发展出了基于单点金刚石车削的慢刀伺服和快刀伺服加工方法。微透镜阵列的三维结构具有高频的不对称特征,并非旋转对称,只能看作自由曲面进行加工。加工自由曲面时,从微结构表面到参考面比如球面的深度差范围通常在几微米到几毫米,此时可以用具有额外行程的刀具进行加工。通过同步金刚石刀具在额外行程上的运动位置与机床工件主轴的角度位置,在刀具切削到工件不同位置时,实时改变刀具的进给量,从而切削得到所需的自由曲面。如果刀具的运动频率相对较低,刀具的额外行程可以通过机床自身的进给轴实现,如果变化频率较高,则需要使用额外的低惯量运动刀架也就是快刀伺服方式。这两种方式的优点是加工效率相对较高,可加工某些复杂结构的微透镜阵列。然而,相同转速情况下由于旋转半径的变化会导致刀具的切削速度也不断改变,对快刀伺服的跟踪频率要求会越来越高,因此在加工大尺寸微透镜阵列时会出现跟踪精度变化,跟踪带宽不足等问题。此外,该方式所需的设备成本较高,经济性较差。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于霖鼎光学(上海)有限公司,未经霖鼎光学(上海)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110392029.9/2.html,转载请声明来源钻瓜专利网。