[发明专利]一种基于对抗生成网络生成高清图像的方法及系统有效
| 申请号: | 202110370804.0 | 申请日: | 2021-04-07 |
| 公开(公告)号: | CN113129231B | 公开(公告)日: | 2023-05-30 |
| 发明(设计)人: | 代磊;王颖;李华伟 | 申请(专利权)人: | 中国科学院计算技术研究所 |
| 主分类号: | G06T5/00 | 分类号: | G06T5/00;G06N3/0475;G06N3/094 |
| 代理公司: | 北京律诚同业知识产权代理有限公司 11006 | 代理人: | 祁建国 |
| 地址: | 100080 北*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 对抗 生成 网络 图像 方法 系统 | ||
1.一种基于对抗生成网络生成高清图像的方法,其特征在于,包括:
步骤1、将真实图像的特征图连接随机噪声后输入第一生成器,生成第一对抗样本,将第一对抗样本与下采样后的真实样本输入第一判别器,计算第一判别器损失函数,交替训练第一生成器和第一判别器,直到达到预设要求,保存当前该第一生成器作为第一图片生成器;
步骤2、使用第一图片生成器生成的第一对抗样本,将该第一图片生成器生成的第一对抗样本进行上采样处理,得到上采样本,复制该上采样本,得到复制样本,并将该上采样本、该复制样本和该真实图像进行图像分区;
步骤3、选取复制样本中连续的分区图像同时作为第一输入和第二输入送入第二生成器,得到初始对抗样本,通过第二判别器计算该真实图像中对应分区图像位置的图像块和该初始对抗样本间的损失,以交替训练该第二生成器与该第二判别器,直到达到预设要求,将当前初始对抗样本替换该复制样本中对应分区图像位置的图像;
步骤4、选取该复制样本中已替换的分区图像及其未替换的邻域区块,作为第一输入,并从该上采样本中选取对应第一输入位置的图像,作为第二输入,将该第一输入和该第二输入送入该第二生成器,生成第二对抗样本,通过该第二判别器计算该真实图像对应第一输入位置的图像块和该第二对抗样本间的损失,以交替训练该第二生成器与该第二判别器,直到达到预设要求,将该第二对抗样本替换该复制样本中位于该位置的分区图像;
步骤5、重复执行步骤4,直到该复制样本中的分区图像均被替换,更新该真实图像;
步骤6,循环执行该步骤2到步骤5,直到该第二判别器计算的损失收敛,级联当前该第一图片生成器和该第二生成器,作为清晰度提升模型,将待清晰度提升的图像输入该清晰度提升模型,得到该待清晰度提升的图像对应的高清图像。
2.如权利要求1所述的基于对抗生成网络生成高清图像的方法,其特征在于,步骤4中该第一输入包括的已替换的分区图像的面积大小等于该邻域区块的面积大小。
3.如权利要求1所述的基于对抗生成网络生成高清图像的方法,其特征在于,该第一生成器的输入为该特征图和该随机噪声,该特征图经浅层卷积池化增加通道减少尺寸后与该随机噪声连接得到F',F'经多级残差块与反卷积结构,得到该第一对抗样本;
第一判别器的输入为该第一对抗样本或该真实图像经下采样模糊处理得到的真实样本,输入经多层卷积池化最后连接全连接层得到标量输出;
该第二生成器首先将两个输入及二者做差的结果各自卷积池化后连接,经过多层残差块组合采样网络结构输出与输入相同尺寸的高分辨率细化图像,作为第二对抗样本;
该第二判别器用于判断该第二对抗样本真实度,该第二判别器的输入为该第二对抗样本或该真实图像对应第一输入位置的图像的图像块,经多层卷积池化最后连接全连接层得到标量输出。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110370804.0/1.html,转载请声明来源钻瓜专利网。





