[发明专利]一种基于改进深度学习的自动驾驶换道轨迹规划方法在审

专利信息
申请号: 202110349255.9 申请日: 2021-03-31
公开(公告)号: CN113033902A 公开(公告)日: 2021-06-25
发明(设计)人: 熊明强;陈涛;夏芹;谯杰 申请(专利权)人: 中汽院智能网联科技有限公司;中国汽车工程研究院股份有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06N3/04;G06N3/08
代理公司: 重庆强大凯创专利代理事务所(普通合伙) 50217 代理人: 范淑萍
地址: 400000 重庆市两江新区金*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 改进 深度 学习 自动 驾驶 轨迹 规划 方法
【说明书】:

本发明涉及车辆智能驾驶技术领域,具体涉及一种基于改进深度学习的自动驾驶换道轨迹规划方法,包括:S1、构建数学模型:根据针对的问题和已有的数据训练若干个BP神经网络,将这些神经网络以替换的方式对经典的BP神经网络中的激活函数进行替换,包括前向传播过程和反向传播过程;S2、规划最优轨迹:利用多项式曲线来模拟车辆换道过程中的行驶轨迹,得到最优轨迹曲线;S3、执行避障算法:在经典Gipps模型的基础上加入车身长度进行改进,作为最优轨迹曲线的约束条件,求解得到最小安全距离和最大安全速度。本发明能够确保换道车辆能够对突发情况做出反应,保障了车辆换道过程的安全性,解决了现有技术安全性不足的技术问题。

技术领域

本发明涉及车辆智能驾驶技术领域,具体涉及一种基于改进深度学习的自动驾驶换道轨迹规划方法。

背景技术

随着科学技术的发展,智能驾驶汽车控制决策的研究也日益深入。智能驾驶汽车能够安全、高效地在复杂的交通场景中导航,例如,决定何时更改车道,超车或减慢速度以允许其他车辆进行车道合并。但是,这取决于智能驾驶车辆是否具有某种能力来预测自身以及周围车辆的轨迹,以便在与周围车辆发生相互作用之前能够主动采取措施规避此类风险。

比如说,中国专利CN111931905A公开了一种图卷积神经网络模型及利用该模型的车辆轨迹预测方法,方法包括步骤:对交通场景内被预测车及其周围车辆以5Hz的频率进行采样,获取各个车辆采样点的位置坐标以及动力学参数,包括横纵坐标和横向、纵向车速、加速度;由被预测车和周围车辆的坐标和车速,计算出被预测车和周围各车辆之间的碰撞时间TTC并判断出车辆行为;将各车历史轨迹输入模型,编码轨迹中的时序交互特征并提取的空间特征,将空间特征总结为上下文向量后输入至LSTM解码器生成车辆的未来轨迹坐标。

在上述技术方案中,采用LSTM神经网络对车辆换道轨迹进行预测,目标轨迹学习精度很高,但是忽略了换道过程中的动态变化,这样的模型对于换道条件过于苛刻,无法用于现实环境;与此同时,换道车辆无法对突发情况做出反应,在安全性方面也还存在不足。

发明内容

本发明提供一种基于改进深度学习的自动驾驶换道轨迹规划方法,解决了现有技术安全性不足的技术问题。

本发明提供的基础方案为:一种基于改进深度学习的自动驾驶换道轨迹规划方法,包括:

S1、构建数学模型:根据针对的问题和已有的数据训练若干个BP神经网络,将这些神经网络以替换的方式对经典的BP神经网络中的激活函数进行替换,包括前向传播过程和反向传播过程;

S2、规划最优轨迹:利用多项式曲线来模拟车辆换道过程中的行驶轨迹,得到最优轨迹曲线;

S3、执行避障算法:在经典Gipps模型的基础上加入车身长度进行改进,作为最优轨迹曲线的约束条件,求解得到最小安全距离和最大安全速度。

本发明的工作原理及优点在于:

(1)将所训练的LSTM神经网络模型嵌入到BP神经网络中,建立可嵌入的深度学习网络模型,使得该模型能够有效地继承以往数据的换道行为特征,同时能缩短对新数据的学习过程,从而更好地学到人类的安全换道行为。

(2)从安全性和迁移学习两个角度入手改进LSTM神经网络模型,保障了车辆换道过程的安全性,使得车辆在学习换道的过程中可以同时利用规则算法对训练过程进行监督和修正,确保了换道车辆能够对突发情况做出反应,从而提高安全性。

本发明能够确保换道车辆能够对突发情况做出反应,保障了车辆换道过程的安全性,解决了现有技术安全性不足的技术问题。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中汽院智能网联科技有限公司;中国汽车工程研究院股份有限公司,未经中汽院智能网联科技有限公司;中国汽车工程研究院股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110349255.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top