[发明专利]一种基于MRA的动脉瘤检测方法、系统、终端及介质在审

专利信息
申请号: 202110315923.6 申请日: 2021-03-24
公开(公告)号: CN113066061A 公开(公告)日: 2021-07-02
发明(设计)人: 马学升;刘伟奇;徐鹏;尹亮;陈金钢;赵友源 申请(专利权)人: 同心医联科技(北京)有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/62;G06K9/62;G06T7/11;G06T7/136;G06T7/194;A61B5/055
代理公司: 北京酷爱智慧知识产权代理有限公司 11514 代理人: 钟继莲
地址: 100089 北京市海淀区王庄路1号院清*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 mra 动脉瘤 检测 方法 系统 终端 介质
【说明书】:

发明公开了一种基于MRA的颅内动脉瘤检测方法,包括以下步骤:获取待处理的原始影像数据,对原始影像数据进行校正和归一化处理,得到处理后影像数据;对处理后的影像数据进行MIP重建,得到MIP图像,删除颈外动脉后生成三种旋转图像,每个旋转图像由围绕单个旋转轴均匀分布的投影组成;自动分割颅内动脉血管体素;对血管区域中的每个体素制作多个补丁,计算所有补丁包含动脉瘤的概率,将计算出的概率按照预设概率阈值分类,大于预设概率阈值的体素基于曲率算法生成体积形状指数图像和曲率图像来显示动脉瘤;测量动脉瘤的最大直径;输出动脉瘤检测结果。该方法能准确识别出颅内动脉血管,还能准确测量出动脉瘤的大小。

技术领域

本发明涉及医学影像和计算机技术领域,具体涉及一种基于MRA的动脉瘤检测方法、系统、终端及介质。

背景技术

颅内动脉瘤是发生在颅内动脉管壁上的异常膨出,是非外伤性蛛网膜下腔出血的主要原因。据报道未破裂颅内动脉瘤的患病率约为3.2%,如果动脉瘤随着时间增长,其破裂风险可能高达2.4%,这是稳定的动脉瘤破裂风险的12倍。破裂的危险因素包括动脉瘤大小、位置、形态以及血流动力学等,动脉瘤一旦破裂可能出现严重后果,甚至危及生命,因此尽早诊断非常重要。

关于颅内动脉瘤的诊断,现有的方式主要有:数字减影血管造影(DSA)、CT血管造影(CTA)、磁共振血管造影(MRA)等。由于DSA和CTA均需要辐射曝光和对比剂注射,所以应用范围局限。MRA被用来筛查未破裂的动脉瘤,作为一种非侵入性的检查方式,其诊断颅内动脉瘤的灵敏度高达96.7%。特别是3维飞行时间磁共振血管成像(3D-TOF-MRA)对小动脉瘤有较高的灵敏度,能多方位成像,可以反应颅内血管形态及血流参数。最大密度投影重建(MIP)是处理MRA图像最为常用的一种方法,MIP图像具有直观、全面显示成像范围内走行迂曲血管的优势。

工智能(AI)因其在基于图像任务中令人印象深刻的表现而受到全世界的关注。AI几乎参与了动脉瘤的所有步骤,包括检测、破裂风险、并发症预测、治疗策略选择和复发风险评估。然而,结果并不完全令人满意,存在一些限制和挑战。深度学习是机器学习的一个子领域,已经被用来开发最先进的图像识别算法。既往已有研究基于卷积神经网络(CNN)的深度学习算法应用于MIP MRA图像自动检测颅内动脉瘤,这些算法虽然获得了很高的灵敏度,但在小动脉瘤检测方面,灵敏度普遍不高,并且还有相当高的假阳性率,研究中也没有报道特异度。如果算法的特异度较低,则可能把血管分叉和血管狭窄误认为动脉瘤,出现假阳性,增加放射科医生的诊断时间及误诊率,从而限制了临床应用。

发明内容

针对现有技术中的缺陷,本发明实施例提供的一种基于MRA的颅内动脉瘤检测方法、系统、终端及介质,能准确识别出颅内动脉血管,还能准确测量出动脉瘤的大小。

第一方面,本发明第一实施例提供的一种基于MRA的颅内动脉瘤检测方法,包括以下步骤:

获取待处理的原始影像数据,对原始影像数据进行校正和归一化处理,得到处理后影像数据;

对处理后的影像数据进行MIP重建,得到MIP图像,删除颈外动脉后生成三种旋转图像,每个旋转图像由围绕单个旋转轴均匀分布的投影组成;

自动分割颅内动脉血管体素;

对血管区域中的每个体素制作多个补丁,计算所有补丁包含动脉瘤的概率,将计算出的概率按照预设概率阈值分类,大于预设概率阈值的体素基于曲率算法生成体积形状指数图像和曲率图像来显示动脉瘤;

测量动脉瘤的最大直径;

输出动脉瘤检测结果。

第二方面,本发明另一实施例提供的一种基于MRA的颅内动脉瘤检测系统,包括:图像获取模块、MIP重建模块、自动分割模块、动脉瘤识别模块、动脉瘤测量模块和检测结果输出模块,

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同心医联科技(北京)有限公司,未经同心医联科技(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110315923.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top