[发明专利]基于DE-BP神经网络的风电功率预测方法在审
| 申请号: | 202110287887.7 | 申请日: | 2021-03-17 |
| 公开(公告)号: | CN113095477A | 公开(公告)日: | 2021-07-09 |
| 发明(设计)人: | 李宁;王晔琳;何复兴;彭佩佩;王倩;朱龙辉 | 申请(专利权)人: | 西安理工大学;中国电力科学研究院有限公司 |
| 主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06Q10/04;G06Q50/06 |
| 代理公司: | 西安弘理专利事务所 61214 | 代理人: | 宁文涛 |
| 地址: | 710048 陕*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 de bp 神经网络 电功率 预测 方法 | ||
本发明公开了一种基于DE‑BP神经网络的风电功率预测方法,具体按照如下步骤实施:步骤1,获取风电功率相关数据并进行处理;步骤2,使用梯度下降法和反向传播调整BP神经网络的权值和阈值,建立BP神经网络;步骤3,利用DE算法寻找步骤2建立的BP神经网络初始权值和阈值的最优值,得到DE‑BP神经网络模型;步骤4,将DE‑BP神经网络模型用于风电功率的预测,进行风电功率预测。本发明的基于DE‑BP神经网络的风电功率预测方法,解决了现有技术中存在的预测方法易陷入局部最优值,收敛速度过慢问题。
技术领域
本发明属于风电功率预测方法技术领域,涉及一种基于DE-BP神经网络的风电功率预测方法。
背景技术
随着我国风电装机容量的不断增长,大规模风电的接入对电网的影响越来越明显。对风电功率进行准确有效的预测能够减少风电接入对电网的不良影响,优化电网调度。高精度的风电场输出功率预测可以有效减轻电力系统错峰、错频压力,也是给用户端提供一个经济、可靠、安全的供电网络的基础。
差分进化算法(Differential Evolution Algorithm,DE)采用一对一的竞争机制,只有当子代个体优于父代个体时才会置换父代个体。
BP(Back Propagation Neural Network,BP)预测模型确立的过程,就是对训练集训练的过程,此过程中决策变量很多,BP的标准学习算法使其易陷入局部最优解。由于带有自适应变异因子的DE算法能在全局寻优和局部寻优中获得一个较好的平衡,并且收敛性能较好,且易于实现,所以,基于DE优化的DE-BP可以避免陷入局部点,从而使BP模型的预测结果精度提高。
现有的准确率高的风电功率预测方法大部分是基于人工神经网络,如BP神经网络,RBF神经网络进行预测,但这些方法容易陷入局部最优值,收敛速度过慢。
发明内容
本发明的目的是提供一种基于DE-BP神经网络的风电功率预测方法,解决了现有技术中存在的预测方法易陷入局部最优值,收敛速度过慢问题。
本发明所采用的技术方案是,基于DE-BP神经网络的风电功率预测方法,具体按照如下步骤实施:
步骤1,获取风电功率相关数据并进行处理;
步骤2,使用梯度下降法和反向传播调整BP神经网络的权值和阈值,建立BP神经网络;
步骤3,利用DE算法寻找步骤2建立的BP神经网络初始权值和阈值的最优值,得到DE-BP神经网络模型;
步骤4,将DE-BP神经网络模型用于风电功率的预测,进行风电功率预测。
本发明的特征还在于,
步骤1具体为:选取一段时间内的风电功率数据及相关参数,剔除错误数据,并进行归一化处理,将获得的数据取80%作为训练集,20%作为验证集,其中相关参数指风速、风电功率、风向、温度。
步骤2具体为:根据训练集的特点初始化BP神经网络的输入节点数、输出节点数和隐含层节点数,使用梯度下降法和反向传播来不断调整BP神经网络的权值和阈值,使BP神经网络的误差平方和最小,构建BP神经网络模型。
步骤2具体为:
步骤2.1,定义输入层和输出层节点数
输入层节点数是影响风电功率的因素的个数m,输出层的节点数是p;
步骤2.2,确定隐含层节点数n:
其中,n为隐含层节点数,m为输入层节点数;p为输出层节点数,α为0~10之间的常数;
步骤2.3,隐含层节点的输出为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学;中国电力科学研究院有限公司,未经西安理工大学;中国电力科学研究院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110287887.7/2.html,转载请声明来源钻瓜专利网。





