[发明专利]一种社交网络中的自然场景图像文本检测方法有效

专利信息
申请号: 202110279656.1 申请日: 2021-03-16
公开(公告)号: CN112926569B 公开(公告)日: 2022-10-18
发明(设计)人: 王国胤;陈卓;刘群 申请(专利权)人: 重庆邮电大学
主分类号: G06V10/22 分类号: G06V10/22;G06V10/80
代理公司: 重庆辉腾律师事务所 50215 代理人: 卢胜斌
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 社交 网络 中的 自然 场景 图像 文本 检测 方法
【说明书】:

发明属于社交网络技术领域,具体涉及一种社交网络中的自然场景图像文本检测方法,该方法包括:实时获取社交网络中待检测的自然场景图像数据;对获取的数据进行预处理;将预处理后的数据输入到训练好的多粒度特征融合模型中,得到数据检测结果;本发明不仅可以提高图像中的文本检测准确率,而且减少了复杂模型所需要的时间开销,优化了自然场景下复杂环境对图像中文本检测的影响。

技术领域

本发明属于社交网络技术领域,具体涉及一种社交网络中的自然场景图像文本检测方法。

背景技术

随着互联网的的发展和移动通讯设备的普及,用户不再仅仅在电脑端使用移动社交网络平台所提供的各种服务,而是随时随地在通过各种移动设备进行着个人的网上社交。在信息时代的大环境下,社交网络已成为人们线上沟通交流,传递信息最常用的工具。目前,社交网络中的用户越来越倾向于用图片来分享自己的生活状态和生活轨迹。文本作为人类文明的标志、信息交流的载体,广泛地存在与社交网络中的自然场景图像中,相较于图像中的其它自然场景内容,如:树木、行人、建筑物等各种景观,自然场景中的文字则具有更强的逻辑性与更概括的表达性,能提供更多的高层语义信息,准确地识别图像中的文本将有助于场景内容的分析与理解,有助于获取社交网络用户的生活足迹相关信息,对用户的社交关系分析起着极其重要的作用。

目前,针对自然场景文本处理的研究工作主要使用两大类方法。第一种是传统的自然场景文本检测方法,该方法又分为基于像素连通域分析的方法和基于滑动检测窗口的方法,该方法主要依赖于图像的像素和文本的形状、排列、笔画宽度等特征,首先获得文本候选区域,然后采用手动设计的特征对所获得的候选区域进行验证,以此确定图像中的文本信息区域。另一种是基于深度学习的自然场景文本检测方法,深度学习的方法通过神经网络模型组合低层特征从而形成高层特征来表示属性类别,并设计专用的损失函数让计算机自动并精准学习图像中文字信息的特征。

但是由于目前对深度神经网络模型的鲁棒性要求越来越高,过于复杂以及多方向与形变文本检测的问题,因此需要综合鲁棒性和模型检测精确度,以达到对社交网络中的图像进行有效分析。

发明内容

为解决以上现有技术存在的问题,本发明提出了一种社交网络中的自然场景图像文本检测方法,该方法包括:实时获取社交网络中待检测的自然场景图像数据;对获取的数据进行预处理;将预处理后的数据输入到训练好的多粒度特征融合模型中,得到数据检测结果;

训练多粒度特征融合模型的过程包括:

S1:采集社交网络中的自然场景图像数据集,对图像中的文本信息进行标注;

S2:将获取的数据集划分为训练集和测试集,对训练集中的数据进行预处理;

S3:将预处理后的数据输入到多粒度特征融合模型中进行训练;

S4:将测试集中的数据输入到训练后的多粒度特征融合模型中,得到该图像文本预测和文本几何图矩阵;

S5:根据可视化文本框计算模型的损失函数;当损失函数最小时,完成模型的训练;

S6:将测试集中的数据输入到模型中,输出文本特征向量,对输出的文本特征向量进行消除冗余计算,在检测图像上生成可视化文本框。

优选的,对数据集中的数据进行划分的过程包括:采用交叉验证的方式将已标注的图像数据随机选取2/3的数据作为训练集,其他数据作为验证集;对于训练集中的数据,根据图像标注信息对标注的文本框加入0、1标签,其中人眼难以识别的包含模糊、细小文本的标注框信息标为0,清晰可见具有语义的文本标注框信息标为1。

优选的,将预处理后的数据输入到多粒度特征融合模型中进行训练的过程包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110279656.1/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top