[发明专利]一种基于机器视觉和深度学习的防打保龄的方法和系统在审
申请号: | 202110276736.1 | 申请日: | 2021-03-15 |
公开(公告)号: | CN113177557A | 公开(公告)日: | 2021-07-27 |
发明(设计)人: | 张强;陈志辉;刘键涛;魏秋新 | 申请(专利权)人: | 福建电子口岸股份有限公司 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62;G06K9/40 |
代理公司: | 厦门市首创君合专利事务所有限公司 35204 | 代理人: | 连耀忠;王婷婷 |
地址: | 361000 福建省*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 机器 视觉 深度 学习 防打保龄 方法 系统 | ||
1.一种基于机器视觉和深度学习的防打保龄的方法,其特征在于,包括如下步骤:
利用设置在大梁和小车上的摄像头采集得到RGB图像;
将得到的RGB图像通过矩形分割方法提取ROI区域,并通过高斯滤波进行图像降噪,通过改进的尺度不变特征变换算法进行图像的特征提取;
将得到的图像特征输入训练好的改进的boosting分类模型中,判定是否出现防打保龄;
当判定结果为出现防打保龄,则触发当前呗位的保护。
2.根据权利要求1所述的一种基于机器视觉和深度学习的防打保龄的方法,其特征在于,将得到的RGB图像通过矩形分割方法提取ROI区域,具体包括:
在待处理的RGB图像选取两个点;
以这两个点为一条对角线,确定出一个矩形区域。
3.根据权利要求1所述的一种基于机器视觉和深度学习的防打保龄的方法,其特征在于,通过改进的尺度不变特征变换算法进行图像的特征提取,具体为:
建立图像的高斯差分金字塔,构建出高斯差分尺度空间,并通过改变滤波器模板尺寸获取不同尺度的图像;
寻找局部极值点,并通过计算Hessian矩阵和积分图像进行局部极值点的检测,确定特征点;
根据特征点领域的像素梯度分布情况求出特征点的稳定方向。
4.根据权利要求1所述的一种基于机器视觉和深度学习的防打保龄的方法,其特征在于,通过改进的尺度不变特征变换算法进行图像的特征提取,其中提取的特征具体包括:
当前呗位集装箱的位置、高度、偏转角度和隔壁呗位集装箱的位置、高度信息,当前呗位集装箱边界框和隔壁呗位集装箱的边界框,以及吊具位置、长度。
5.根据权利要求1所述的一种基于机器视觉和深度学习的防打保龄的方法,其特征在于,改进的boosting分类模型,具体为:
由至少两个的基分类器组成Bagging分类器,并由至少两个Bagging分类器以串行方式排列组成Boosting分类器,所述基分类器包括:随机森林、支持向量机、决策树、朴素贝叶斯,随机梯度下降。
6.一种基于机器视觉和深度学习的防打保龄的系统,其特征在于,包括如下:
获取图像单元:利用设置在大梁和小车上的摄像头采集得到RGB图像;
图像预处理和特征提取单元:将得到的RGB图像通过矩形分割方法提取ROI区域,并通过高斯滤波进行图像降噪,通过改进的尺度不变特征变换算法进行图像的特征提取;
判定单元:将得到的图像特征输入训练好的改进的boosting分类模型中,判定是否出现防打保龄;
执行单元:当判定结果为出现防打保龄,则触发当前呗位的保护。
7.根据权利要求6所述的一种基于机器视觉和深度学习的防打保龄的系统,其特征在于,图像预处理和特征提取单元,将得到的RGB图像通过矩形分割方法提取ROI区域,具体包括:
在待处理的RGB图像选取两个点;
以这两个点为一条对角线,确定出一个矩形区域。
8.根据权利要求6所述的一种基于机器视觉和深度学习的防打保龄的系统,其特征在于,图像预处理和特征提取单元,通过改进的尺度不变特征变换算法进行图像的特征提取,具体为:
建立图像的高斯差分金字塔,构建出高斯差分尺度空间,并通过改变滤波器模板尺寸获取不同尺度的图像;
寻找局部极值点,并通过计算Hessian矩阵和积分图像进行局部极值点的检测,确定特征点;
根据特征点领域的像素梯度分布情况求出特征点的稳定方向。
9.根据权利要求6所述的一种基于机器视觉和深度学习的防打保龄的系统,其特征在于,图像预处理和特征提取单元,通过改进的尺度不变特征变换算法进行图像的特征提取,其中提取的特征具体包括:
当前呗位集装箱的位置、高度、偏转角度和隔壁呗位集装箱的位置、高度信息,当前呗位集装箱边界框和隔壁呗位集装箱的边界框,以及吊具位置、长度。
10.根据权利要求6所述的一种基于机器视觉和深度学习的防打保龄的系统,其特征在于,判定单元中,改进的boosting分类模型,具体为:
由至少两个的基分类器组成Bagging分类器,并由至少两个Bagging分类器以串行方式排列组成Boosting分类器,所述基分类器包括:随机森林、支持向量机、决策树、朴素贝叶斯和随机梯度下降。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福建电子口岸股份有限公司,未经福建电子口岸股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110276736.1/1.html,转载请声明来源钻瓜专利网。