[发明专利]图像识别方法、装置、计算机设备和存储介质在审

专利信息
申请号: 202110240341.6 申请日: 2021-03-04
公开(公告)号: CN113705596A 公开(公告)日: 2021-11-26
发明(设计)人: 郭卉 申请(专利权)人: 腾讯科技(北京)有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06N20/00
代理公司: 广州华进联合专利商标代理有限公司 44224 代理人: 陈小娜;刘雪帆
地址: 100080 北京市海淀区海淀*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 识别 方法 装置 计算机 设备 存储 介质
【说明书】:

本申请涉及一种图像识别方法、装置、计算机设备和存储介质。所述方法包括:获取目标正样本图像;获取目标正样本图像对应的正样本类别的混淆类别集合;其中混淆类别集合是通过图像集合的类别识别数据对类别集合进行混淆分类得到的;将混淆类别集合中的混淆类别作为负样本类别,获取负样本类别对应的目标负样本图像;基于目标正样本图像以及目标负样本图像对待训练的图像识别模型进行训练,得到训练后的图像识别模型,以基于训练后的图像识别模型进行图像识别。上述方案模型训练过程能充分分析同一混淆类别集合中的正样本图像和负样本图像之间的区别,能够得到对类别易混淆的图像进行准确识别的图像识别模型,提高了图像识别的准确性。

技术领域

本申请涉及图像分类技术领域,特别是涉及一种图像识别方法、装置、计算机设备和存储介质。

背景技术

随着网络技术的发展,出现了对图像进行识别的技术,这个技术通过对图像进行特征分析来确定图像所属的类别。在某些情况下,需要基于相似类别对图像进行区分识别,例如将容易混淆的咖啡厅与西餐厅进行区分识别。

传统技术中,在图像识别的过程中,容易将相似类别下的不同图像识别为同一类别,导致图像识别准确性较低。

需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。

发明内容

基于此,有必要针对上述技术问题,提供一种图像识别方法、装置、计算机设备和存储介质。

一种图像识别方法,所述方法包括:获取目标正样本图像;根据所述目标正样本图像对应的正样本类别,获取所述正样本类别对应的混淆类别集合;其中所述混淆类别集合是通过对图像集合进行类别识别,基于类别识别数据对图像集合所对应的类别集合进行混淆分类得到的;将所述混淆类别集合中的混淆类别作为负样本类别,将所述负样本类别对应的图像作为所述目标正样本图像对应的目标负样本图像;基于所述目标正样本图像以及所述目标负样本图像对待训练的图像识别模型进行训练,得到训练后的图像识别模型,以基于所述训练后的图像识别模型进行图像识别。

一种图像识别装置,所述装置包括:正样本图像获取模块,用于获取目标正样本图像;混淆类别集合获取模块,用于根据所述目标正样本图像对应的正样本类别,获取所述正样本类别对应的混淆类别集合;其中所述混淆类别集合是通过对图像集合进行类别识别,基于类别识别数据对图像集合所对应的类别集合进行混淆分类得到的;负样本图像获取模块,用于将所述混淆类别集合中的混淆类别作为负样本类别,将所述负样本类别对应的图像作为所述目标正样本图像对应的目标负样本图像;模型训练模块,用于基于所述目标正样本图像以及所述目标负样本图像对待训练的图像识别模型进行训练,得到训练后的图像识别模型,以基于所述训练后的图像识别模型进行图像识别。

一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:获取目标正样本图像;根据所述目标正样本图像对应的正样本类别,获取所述正样本类别对应的混淆类别集合;其中所述混淆类别集合是通过对图像集合进行类别识别,基于类别识别数据对图像集合所对应的类别集合进行混淆分类得到的;将所述混淆类别集合中的混淆类别作为负样本类别,将所述负样本类别对应的图像作为所述目标正样本图像对应的目标负样本图像;基于所述目标正样本图像以及所述目标负样本图像对待训练的图像识别模型进行训练,得到训练后的图像识别模型,以基于所述训练后的图像识别模型进行图像识别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(北京)有限公司,未经腾讯科技(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110240341.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top