[发明专利]一种基于多级注意力机制的藏文机器阅读理解方法在审

专利信息
申请号: 202110192706.2 申请日: 2021-02-20
公开(公告)号: CN112966474A 公开(公告)日: 2021-06-15
发明(设计)人: 孙媛;陈超凡 申请(专利权)人: 中央民族大学
主分类号: G06F40/126 分类号: G06F40/126;G06F40/30;G06N3/04;G06N3/08
代理公司: 北京亿腾知识产权代理事务所(普通合伙) 11309 代理人: 陈霁
地址: 100081 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 多级 注意力 机制 藏文 机器 阅读 理解 方法
【说明书】:

发明涉及一种基于多级注意力机制的藏文机器阅读理解方法,该方法包括以下步骤:对藏文文字进行音节以及词语两个不同级别的切分,然后对音节使用高速网络进行编码,最后融入到藏文词向量中;通过词级别的注意力机制进行关键词搜索;通过重读机制对文章的关键语义信息提取;通过自注意力机制对文章中关键信息进行再次的筛选;使用全连接网络对上述的隐变量进行解码,并对答案位置进行预测。本发明能够解决针对藏文机器阅读理解文本信息编码中遗失音节信息的问题,以及能够精准的解决藏文机器阅读理解任务。

技术领域

本发明涉及自然语言处理技术领域,特别涉及一种基于多级注意力机制的藏文机器阅读理解方法。

背景技术

近年来,随着信息化的快速发展,教会机器阅读和理解人类语言文本受到了越来越多的关注。机器阅读理解旨在要求机器“阅读”一篇文本内容之后,能够正确的回答出与文本相关的问题。它是衡量机器对自然语言理解程度的标准之一。机器阅读理解任务有着广泛的应用价值,例如:为搜索引擎提供更好的支持,为对话系统提供高质量的对话服务,为数字教学提供有利的问题解答服务等等。目前机器阅读理解在英语和汉语上已经取得了很大的进展,然而针对低资源语言藏文的机器阅读理解研究还处于起步阶段,其主要的原因是藏文的语法结构复杂,浅层的网络架构难以理解藏文语义信息。因此如何高效的让机器理解复杂的藏文文本是完成藏文机器阅读理解任务的主要关键。

早期由于缺乏大规模的数据集,大多数机器阅读理解系统是基于规则或统计模型,因此研究人员必须手工设计一些复杂的语法或语义规则。这些系统的精度只能达到30%-40%,因此这些成果并没有引起广泛的关注。在接下来的几十年中,随着大规模的机器阅读理解数据集的发布,基于深度学习的机器阅读理解的研究取得了一些显著的成绩。Wang等人提出Match-LSTM模型,他们分别采用长短时记忆网络对问题和短文进行编码,然后在长短时记忆网络单元中引入基于注意力的问题加权表示,较传统的特征提取方法有了一定的提升。随后,微软团队为了捕捉文章中单词之间的长期依赖关系提出了R-Net模型,这是通过引入额外的自注意力层来实现的。他们的实验结果表明通过引入自注意力机制能够提高模型的准确性。Cui等人提出了“注意力加注意力”阅读器模型,这是一种基于行和列的相结合的注意计算方法。同时为了进一步提高模型的准确性,他们采用了“N-Best”和“重新排列”的策略来验证答案。与之前的工作不同,Seo等人采用了两个方向的注意力并提出了BiDAF模型分别对文章到问题编码以及问题到文章编码两种方式去预测答案。以上研究都是基于单层的注意力机制,但是他们都忽略了藏文本身的字形和语法结构,因此在藏文机器阅读理解任务上难以有较高的表现。

发明内容

本发明的目的在于,提出将藏文的音节信息引入到词向量中,再利用多层注意力机制以精准地解决机器阅读理解问题。

为实现上述目的,本发明提供了一种基于多级注意力机制的藏文机器阅读理解方法,该方法包括以下步骤:

(1)融合藏文音节信息的文章和问题编码

为了能够融入更细粒度的藏文音节信息,同时减少藏文不正确的分词带来错误的语义信息,本发明通过对藏文文字进行音节以及词语两个不同级别的进切分,然后对音节使用高速网络进行编码,最后融入到藏文词向量中。

(2)词级别的注意力机制进行关键词搜索

为了有效的提高模型的预测答案的准确率,本发明使用一种词级别的注意力机制去关注文章中与问题相关的重点关键词。

(3)重读机制对文章的关键语义信息提取

为了预测正确答案的范围,本发明使用一种重读机制针对文章中与问题相关的关键语义信息进行搜索。

(4)自注意力机制对文章中关键信息进行再次的筛选

为了减少问题与文章之间的差异性带来的影响,本发明通过自注意力机制对编码后的文章中蕴含的答案信息进行再次搜索,从而提高模型预测答案的准确率。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中央民族大学,未经中央民族大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110192706.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top