[发明专利]一种算数应用题智能解题方法及系统有效
申请号: | 202110183217.0 | 申请日: | 2021-02-10 |
公开(公告)号: | CN112860856B | 公开(公告)日: | 2022-06-14 |
发明(设计)人: | 陈羽中;胡潇炜 | 申请(专利权)人: | 福州大学 |
主分类号: | G06F16/33 | 分类号: | G06F16/33;G06F16/35;G06F40/289;G06F40/30;G06F40/216;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 张灯灿;蔡学俊 |
地址: | 350108 福建省福州市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 算数 应用题 智能 解题 方法 系统 | ||
本发明涉及一种算数应用题智能解题方法及系统,该方法包括以下步骤:步骤A:对采集到的算数应用题进行预处理,建立包含算数应用题的已知条件、问题以及答案的训练集;步骤B:构建用于算数应用题智能解题的深度学习模型,确定损失函数,在训练集上通过最小化损失函数训练用于算数应用题智能解题的深度学习模型;步骤C:将算数应用题的已知条件和问题输入训练好的深度学习模型中,输出问题的答案。该方法及系统能够理解输入的算数应用题的已知条件文本和问题,并给出对应的答案。
技术领域
本发明属于自然语言处理领域,具体涉及一种算数应用题智能解题方法及系统。
背景技术
随着深度学习在自然语言处理领域的不断尝试与应用,一些端到端模型已经在一些机器算数应用题自动计算任务上表现出了非常不错的效果。这些模型不需要依赖于传统方法所使用的复杂的人工设计的特征,并且性能比传统方法要好得多。
在基于深度学习的机器算数应用题自动计算模型上,Wang等人提出了Match-LSTM+Pointer Network模型,其是基于SQuAD数据集的首个神经网络模型,模型的整体结构是将match-LSTM和Pointer Network进行结合,match-LSTM用于获取感知问题的应用题一直条件表示,而Pointer Network用来从输入文本中提取并构造一个应用题答案。Seo等人提出Bi-Directional Attention Flow,该模型采用不同级别的粒度作为输入,包括字符级别、单词级别和上下文嵌入,并且它使用双向注意力流,即从问题到应用题已知条件的注意力和从已知条件到问题的注意力,来获得感知问题的段落表示。Xiong等人提出了DCN(Dynamic Coattention Networks),其中引入了Coattention机制,用来结合问题和应用题已知条件的相互依赖表示和动态迭代,以避免陷入与先前的单遍模型之类的错误答案相对应的局部最大值。Weissenborn等人提出FastQA,FastQA通过简单的体系结构获得了良好的性能,FastQA的提出质疑了提高问答系统模型复杂性的必要性。R-NET是MSRA在2017年提出的,并在SQuAD和MS-MARCO数据集上取得了最优异的成绩。R-NET使用双向GRU来编码问题和应用题已知条件,其中融合输入的问题和应用题已知条件文本信息是通过它的门控注意力做到的,这里匹配层负责输出应用题已知条件的表征,输出层的做法和以前的模型类似,也是预测答案的边界。Shen等人提出了ReasoNet,ReasoNe的做法与以前不同的是,它有自己独特的阅读或推理的轮数处理机制,对待不同复杂度的问题和应用题已知条件,都通过强化学习去获得对应的阅读或推理轮数。Yu等人提出了QAnet模型,QAnet在嵌入和建模编码器时只使用卷积和自注意力机制,抛弃了常用的RNN,它的卷积使用的是深度可分离的卷积(depthwise separable convolutions),深度可分离的卷积可以捕获文本的局部结构,并且其中多头注意机制则可以模拟整个篇章内的全局交互,在TriviaQA数据集上取得了不错的效果。Dheeru等人提出了NAQANet模型,该模型主要是为了解决DROP数据集的推理难点而提出的,该模型是在QANet的基础上做了扩展,对不同答案类型的问题做了分类处理,对应四个不同的输出层,其分别是计算题已知条件文本答案预测、问题答案预测、统计数字和算数应用题自动计算。
深度学习的提出,改变了很多自然语言处理任务的研究思路,并且深度学习应用于机器算数应用题自动计算任务中取得了不错的效果,这也从侧面说明了深度学习对算数应用题自动计算任务的重要性。由于生活中的算数应用题自动计算数据更加复杂,所以现在的机器算数应用题自动计算任务对于机器的推理能力提出了更高的要求,越来越多的新颖的算数应用题自动计算数据集被提出,回答这些数据集中的问题,对离散推理能力有很高的要求,如何处理这些数据集,成为提升模型推理能力的关键,然而现有的深度学习模型可能还不够成熟,其结构上还存在一定的改进空间。
发明内容
本发明的目的在于提供一种算数应用题智能解题方法及系统,该方法及系统能够理解输入的算数应用题的已知条件文本和问题,并给出对应的答案。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110183217.0/2.html,转载请声明来源钻瓜专利网。