[发明专利]一种级联医学图像增强方法有效
申请号: | 202110113305.3 | 申请日: | 2021-01-27 |
公开(公告)号: | CN112767377B | 公开(公告)日: | 2022-07-05 |
发明(设计)人: | 林劼;党元;李继演;伍双楠;王勇 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T5/00;G06V10/74;G06V10/774;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 成都金英专利代理事务所(普通合伙) 51218 | 代理人: | 袁英 |
地址: | 610041 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 级联 医学 图像 增强 方法 | ||
本发明公开了一种级联医学图像增强方法,包括以下步骤:清晰医学图像和随机噪声联合输入,用深度学习模型1处理联合输入的特征,得到带血污图像;用深度学习模型2处理生成的带血污的图像和纯血污原图像,判断两张图像是否相似;若不相似,则更新深度学习模型2的神经网络梯度;若相似则进入下一步;将带血污图像输入级联神经网络模型,输出最终清晰图像结果。本发明通过深度学习中的生成对抗网络来模拟生成血污图像,通过使用改进后的变分自编码网络来消除血污图像中的血污,解决了医学图像中血液污染影响视觉的问题,较好的模拟医学图像中的血污和消除医学图像中的血污,使医学图像的清晰度更高、信噪比峰值更大。
技术领域
本发明涉及图像处理技术领域,尤其涉及一种级联医学图像增强方法。
背景技术
多年来,医学影像技术迅速发展,已经成为医疗诊断中不可或缺的技术。进入数字影像时代以来,海量数据的产生为医学影像未来的发展提供了更多的可能性。因此,如何对医学影像大数据做进一步分析和挖掘、如何从医学图像高维度数据中提取有价值的信息、如何将现代医学影像的发展与精准医疗紧密结合,成为医学影像未来发展的重要课题。近年来,随着计算能力的增强和数据的爆炸式增加,以深度学习为代表的人工智能(AI)技术取得了长足的进步,并开始应用于生产生活中的各个领域。
近年来,有诸多新研究着眼于如何利用深度学习技术来进一步优化医学影像的采集与重建策略,然而,都并未取得较好的研究成果,其医学图像的采集效率和图像质量都较低,不能模拟较为真实的血污图像,从而无法实现更准确的诊断与治疗。
发明内容
本发明的目的在于克服现有技术的不足,提供一种级联医学图像增强方法。
本发明的目的是通过以下技术方案来实现的:
一种级联医学图像增强方法,包括以下步骤:
步骤1:带血污图像的生成,清晰医学图像和随机噪声联合输入,用深度学习模型1处理联合输入的特征,得到带血污图像;
步骤2:带血污图像的判别,用深度学习模型2处理生成的带血污的图像和纯血污原图像,判断两张图像是否相似;若不相似,则更新深度学习模型2的神经网络梯度;若相似则跳转到步骤3;
步骤3:清晰图像的级联生成,清晰图像的级联生成分为三个阶段,在第一阶段,输入带血污图像生成血污残差图像,将血污残差图像与清晰医学图像相加得到清晰图像,以得到清晰图像作为带血污图像输入第二阶段;第二阶段和第三阶段重复第一阶段步骤,并以第三阶段输出的清晰图像作为最后的清晰图像结果。
进一步的,所述步骤1包括以下子步骤:
步骤101:准备训练样本,训练样本为清晰医学图像和纯血污原图像;
步骤102:神经网络设计,训练网络是神经网络池化层和卷积层组合成的生成网络;
步骤103:首先,对于清晰医学图像,进行两次卷积操作,具体为:图像特征维数为3×4n×4n的清晰医学图像Iclear一次卷积后得到维数为b×2n×2n的图像特征F2,F2再一次卷积后得到维数为a×n×n图像特征F1;其中a,b,n均为正整数;然后,生成维数为1×1×m的噪声N0,调整噪声的结构得到维数为a×n×n噪声N1,其中m=a×n×n;N1+F1作为输入进行一次上采样和卷积得到维数为b×2n×2n噪声N2;N2+F2作为输入进行一次上采样和卷积得到维数为3×4n×4n噪声N3,N3+Iclear得到维数为3×4n×4n带血污图像Inoise。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110113305.3/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序